EFFICIENT SPATIO-TEMPORAL MODELLING TO ENABLE TOPOLOGICAL ANALYSIS

Author:

Jahn M. W.,Kuper P.,Breunig M.

Abstract

Abstract. Time-dependent analysis scenarios such as heat, wind or flood analysis in cities and in landscapes need a correct and consistent modelling of geometry and topology over time. However, hitherto efficient time-dependent geometry models and topological analysis based on a mathematically sound theory were neglected when modelling objects in the built and natural environment. This is surprising as incorrect topological relationships over time such as not fitting neighbourhoods of surfaces or solids inevitably lead to wrong analysis results. In this paper we propose the combination of a spatio-temporal geometry model together with a topological schema to provide accessible and consistent objects over time. Where an efficient spatio-temporal geometry model reduces redundant geometric data and enables spatio-temporal queries, an efficient topological model minimizes the number of relations as far as possible and enables robust topological queries. The geometry model uses the concepts of point tubes, delta storage as well as net components and pre- and post-objects to enable the change of geometry and topology over time for natural structures, e.g., digital terrain models (DTM). Geometry here are the boundary and interior coordinates of the objects whereas topology here is interpreted in a wider sense than only focusing on geometrically induced topology to maintain topological consistency by the management of incidence relations. In addition, the topological schema introduces three basic bidirectional relation types to manage aggregations, abstractions and incidences in order to provide a general abstract topological schema for the management of complex intra- and inter-related spatio-temporal objects to enable the modelling of consistent complex topology over time. Finally, a conclusion is given highlighting the applicability of the approach and future research.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Topological Access Methods for Spatial and Spatiotemporal Data;ISPRS International Journal of Geo-Information;2022-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3