BADI: A NOVEL BURNED AREA DETECTION INDEX FOR SENTINEL-2 IMAGERY USING GOOGLE EARTH ENGINE PLATFORM

Author:

Farhadi H.,Ebadi H.,Kiani A.

Abstract

Abstract. Forest fires are natural events that occur in numerous ecosystems worldwide and cause significant damage to human, ecological and socio-economic factors. It is also crucial to obtain useful information on the distribution and density of burned areas on large scale. An efficient way to map large regions is through remote sensing (RS). Nevertheless, the complex scenario and similar spectral signature of features in multispectral bands can lead to many false positives, making it difficult to extract the burned areas accurately. Multispectral data from Sentinel-2 satellite images allow the development of novel burned area indices, as more spectral data is recorded in the Red-Edge region. This research aims to develop a new burned area detection index (BADI) at 20 m spatial resolution in the google earth engine platform to detect the wildfire-affected areas in southwest of Iran using Sentinel-2 satellite imagery. The BADI spectral index has been specially designed to take benefit of the Sentinel-2 spectral bands and use a spectral combination of bands that are reasonable for post-fire burned regions detection. The final results indicated that the proposed index by applying a post-processing stage works well in the case of the study area to identify the burned areas. At the same time, it can satisfactorily suppress the complicated and irrelevant changes in the scene. Furthermore, the BADI index is rapid and can provide the burned areas map in near real-time. According to the Copernicus Emergency Management Service (EMS) reference data, maps of the burned areas were produced with a kappa coefficient of 0.92 and an overall accuracy of 92.15%, which demonstrated a good result in comparison to similar spectral indices.

Publisher

Copernicus GmbH

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3