WHEAT BIOMASS ESTIMATION FROM UAV IMAGERY USING AN ENSEMBLE LEARNING APPROACH WITH BAYESIAN OPTIMIZATION

Author:

Moradi F.,Zarei A.,Ranjbar S.,Homayouni S.ORCID

Abstract

Abstract. Wheat is one of the most important food supply and food security globally, especially in developing countries. Therefore, predicting the performance and determining the factors that affect the production of this product is very important. Biomass is one of the crop’s most important biophysical parameters, and its correct estimation can help improve accurate monitoring of growth and crop performance forecasting. With the recent advances in remote sensing, access to aerial images taken by unmanned aerial vehicles (UAV) for monitoring crops has been provided. This study investigates the potential of visible UAV images and the resulting vegetation indices to estimate the dry biomass of two types of Brazilian wheat. For this purpose, the performance of three regression algorithms, including Random Forest (RF), eXtreme Gradient Boosting (XGB), and Gradient Boosting Machine (GBM), to estimate wheat biomass was evaluated. Also, to improve the performance of regression models, Bayesian optimization (BO) was used to adjust the Hyper-parameters, and random forest feature selection was used to select the optimal subset of features. Based on the results, the XGB algorithm with the Root Mean Square Error (RMSE) of about 911.86 (Kg/ha) and coefficient of determination (R2) of about 0.89% showed better performance in biomass estimation than other algorithms.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Above Ground Biomass Estimation in Agroforestry Environment by UAS and RGB Imagery;2024 11th International Workshop on Metrology for AeroSpace (MetroAeroSpace);2024-06-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3