Author:
Fathipoor H.,Shah-Hosseini R.,Arefi H.
Abstract
Abstract. Weed management is of crucial importance in precision agriculture to improve productivity and reduce herbicide pollution. In this regard, showing promising results, deep learning algorithms have increasingly gained attention for crop and weed segmentation in agricultural fields. In this paper, the U-Net++ network, a state-of-the-art convolutional neural network (CNN) algorithm, which has rarely been used in precision agriculture, was implemented for the semantic segmentation of weed images. Then, we compared the model performance to that of the U-Net algorithm based on various criteria.The results show that the U-Net++ outperforms traditional U-Net in terms of overall accuracy, intersection over union (IoU), recall, and F1-Score metrics. Furthermore, the U-Net++ model provided weed IoU of 65%, whereas the U-Net gave weed IoU of 56%. In addition, the results indicate that the U-Net++ is quite capable of detecting small weeds, suggesting that this architecture is more desirable for identifying weeds in the early growing season.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献