CROP AND WEED SEGMENTATION ON GROUND-BASED IMAGES USING DEEP CONVOLUTIONAL NEURAL NETWORK

Author:

Fathipoor H.,Shah-Hosseini R.,Arefi H.

Abstract

Abstract. Weed management is of crucial importance in precision agriculture to improve productivity and reduce herbicide pollution. In this regard, showing promising results, deep learning algorithms have increasingly gained attention for crop and weed segmentation in agricultural fields. In this paper, the U-Net++ network, a state-of-the-art convolutional neural network (CNN) algorithm, which has rarely been used in precision agriculture, was implemented for the semantic segmentation of weed images. Then, we compared the model performance to that of the U-Net algorithm based on various criteria.The results show that the U-Net++ outperforms traditional U-Net in terms of overall accuracy, intersection over union (IoU), recall, and F1-Score metrics. Furthermore, the U-Net++ model provided weed IoU of 65%, whereas the U-Net gave weed IoU of 56%. In addition, the results indicate that the U-Net++ is quite capable of detecting small weeds, suggesting that this architecture is more desirable for identifying weeds in the early growing season.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3