INTELLIGENT 3D CRACK RECONSTRUCTION USING CLOSE RANGE PHOTOGRAMMETRY IMAGERY

Author:

Majidi S.,Omidalizarandi M.,Sharifi M. A.

Abstract

Abstract. Civil infrastructure Structural Health Monitoring (SHM) and its preservation from deterioration is a crucial task. In general, natural disasters like severe earthquakes, extreme landslides, subsidence or intensive floods directly influence the health of civil structures such as buildings, bridges, roads, and dams. Evaluation and inspection of defects and damages of the aforementioned structures help to preserve them from destruction by accelerating rehabilitation and reconstruction. An automatic and precise crack detection framework is required for periodic assessment and inspection due to the large number of the structures. In this study, a two-step crack segmentation and its 3D reconstruction procedure is proposed. The crack segmentation is carried out by using Deeplabv3+ architecture and Xception as the backbone. Next, Squeeze-and-Excitation is added as an attention module to achieve higher accuracy. Integration of predicted masks and original images into a structure-from-motion procedure is additionally taken into account. In the last step, ground control points and scale bars are considered to overcome the problem of datum rank deficiency in absolute orientation through the bundle adjustment procedure in aerial triangulation. The most probable segmented cracks are overlaid on the 3D point clouds in the global coordinate system with true scales. Our network is trained based on 8000 images and their corresponding masks, leading to 69% in Intersection over Union (IoU) index. Sub-millimetre accuracy of crack reconstruction using the proposed methodology is validated with a scale bar.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Learning Models for Hazard-Damaged Building Detection Using Remote Sensing Datasets: A Comprehensive Review;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3