SURFACE NORMAL RECONSTRUCTION USING POLARIZATION-UNET

Author:

Mortazavi F. S.,Dajkhosh S.,Saadatseresht M.

Abstract

Abstract. Today, three-dimensional reconstruction of objects has many applications in various fields, and therefore, choosing a suitable method for high resolution three-dimensional reconstruction is an important issue and displaying high-level details in three-dimensional models is a serious challenge in this field. Until now, active methods have been used for high-resolution three-dimensional reconstruction. But the problem of active three-dimensional reconstruction methods is that they require a light source close to the object. Shape from polarization (SfP) is one of the best solutions for high-resolution three-dimensional reconstruction of objects, which is a passive method and does not have the drawbacks of active methods. The changes in polarization of the reflected light from an object can be analyzed by using a polarization camera or locating polarizing filter in front of the digital camera and rotating the filter. Using this information, the surface normal can be reconstructed with high accuracy, which will lead to local reconstruction of the surface details. In this paper, an end-to-end deep learning approach has been presented to produce the surface normal of objects. In this method a benchmark dataset has been used to train the neural network and evaluate the results. The results have been evaluated quantitatively and qualitatively by other methods and under different lighting conditions. The MAE value (Mean-Angular-Error) has been used for results evaluation. The evaluations showed that the proposed method could accurately reconstruct the surface normal of objects with the lowest MAE value which is equal to 18.06 degree on the whole dataset, in comparison to previous physics-based methods which are between 41.44 and 49.03 degree.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3