MONOCULAR DEPTH ESTIMATION OF GOOGLE EARTH IMAGES USING CONVOLUTIONAL NEURAL NETWORKS

Author:

Najaf M.,Arefi H.,Amini Amirkolaee H.,Farajelahi B.

Abstract

Abstract. Depth estimation from images is an important task using scene understanding and reconstruction. Recently, encoder-decoder type fully convolutional architectures have gained great success in the area of depth estimation. Depth extraction from aerial and satellite images is one of the important topics in photogrammetry and remote sensing. This is usually done using image pairs, or more than two images. Solving this problem using a single image is still a challenging problem and has not been completely solved. Several convolutional neural networks have been proposed to extract depth from a single image, which act as encoders and decoders. In this article, we use one of these networks, which has performed well for depth estimation, in order to extract height from aerial and satellite images. Our main goal is to investigate the performance of Google Earth satellite data in order to produce a digital elevation model. At first, we extracted the digital model of the target area using ISPRS benchmark data, then we did the same thing using Google Earth satellite images. The paper presents a convolutional neural network for computing a high-resolution depth map given a single RGB Google Earth image. The results show the proper performance of Google Earth satellite images for height extraction. We achieved values of 2.07 m and 0.36 m for the RMS and REL metrics, respectively, which are very comparable and acceptable to the values of 2.04 m and 0.39 m obtained from the ISPRS benchmark images.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semantic Segmentation of Satellite Images for Accurate Forest and Crop Delineation Using Deep Learning Technique;2024 Second International Conference on Data Science and Information System (ICDSIS);2024-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3