THE EFFECT OF SPECTRAL MIXTURES ON WEED SPECIES CLASSIFICATION

Author:

Ronay I.,Kizel F.,Lati R.

Abstract

Abstract. Site-specific weed management (SSWM) is a precise and resource-efficient approach that can result in more productive and sustainable agricultural practices. SSWM requires weed maps, in which the vegetation-related pixels are segmented from the soil and other substances and then classified into crops and different weed species. Such classification with a high spatial resolution is significant for SSWM since preventing economic losses due to weeds requires making management decisions at meter scales. In this regard, hyperspectral sensors can capture leaf anatomy and biochemistry variations, suggesting many advantages for weed classification. However, the typical tradeoff between spectral and spatial resolution poses a challenge for applying hyperspectral imaging in large scales and scenarios of high densities and tiny seedlings at early growth due to mixed pixels. Mixture analysis methods were previously demonstrated to offer opportunities for dealing with mixed pixels in vegetation ecology and agriculture. Nonetheless, they were not widely utilized for weed classification. This study aims to reveal the impact of the spectral mixture on classification results using supervised classification, spectral unmixing, and spatial analysis. We attempted to characterize how the spectral mixture of different weed species and soil at different growth stages affects classification results. Our results suggest that spectral mixtures are probably a significant factor driving misclassifications when classifying weed species. Their effect can be characterized by spatial analysis and fractions obtained by spectral unmixing. We assume that the subpixel information provided by the fraction maps may add information about the spectral mixture that can assist in interpreting misclassification pixels alongside the widely used confusion matrix. This contribution is highly relevant at coarser spatial resolutions.

Publisher

Copernicus GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3