TEMPORALLY TRANSFERABLE MACHINE LEARNING MODEL FOR TOTAL SUSPENDED MATTER RETRIEVAL FROM SENTINEL-2

Author:

Niroumand-Jadidi M.,Bovolo F.

Abstract

Abstract. The empirical (regression-based) models have long been used for retrieving water quality parameters from optical imagery by training a model between image spectra and collocated in-situ data. However, a need clearly exists to examine and enhance the temporal transferability of models. The performance of a model trained in a specific period can deteriorate when applied at another time due to variations in the composition of constituents, atmospheric conditions, and sun glint. In this study, we propose a machine learning approach that trains a neural network using samples distributed in space and time, enabling the temporal robustness of the model. We explore the temporal transferability of the proposed neural network and standard band ratio models in retrieving total suspended matter (TSM) from Sentinel-2 imagery in San Francisco Bay. Multitemporal Sentinel-2 imagery and in-situ data are used to train the models. The transferability of models is then examined by estimating the TSM for imagery acquired after the training period. In addition, we assess the robustness of the models concerning the sun glint correction. The results imply that the neural network-based model is temporally transferable (R2 ≈ 0.75; RMSE ≈ 7 g/m3 for retrievals up to 70 g/m3) and is minimally impacted by the sun glint correction. Conversely, the ratio model showed relatively poor temporal robustness with high sensitivity to the glint correction.

Publisher

Copernicus GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep-Learning-Based Retrieval of an Orange Band Sensitive to Cyanobacteria for Landsat-8/9 and Sentinel-2;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2023

2. Extreme gradient boosting machine learning for total suspended matter (TSM) retrieval from Sentinel-2 imagery;Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2022;2022-10-28

3. Water Quality Retrieval from Landsat-9 (OLI-2) Imagery and Comparison to Sentinel-2;Remote Sensing;2022-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3