A CNN-BASED FLOOD MAPPING APPROACH USING SENTINEL-1 DATA

Author:

Tavus B.,Can R.,Kocaman S.

Abstract

Abstract. The adverse effects of flood events have been increasing in the world due to the increasing occurrence frequency and their severity due to urbanization and the population growth. All weather sensors, such as satellite synthetic aperture radars (SAR) enable the extent detection and magnitude analysis of such events under cloudy atmospheric conditions. Sentinel-1 satellite from European Space Agency (ESA) facilitate such studies thanks to the free distribution, the regular data acquisition scheme and the availability of open source software. However, various difficulties in the visual interpretation and processing exist due to the size and the nature of the SAR data. The supervised machine learning algorithms have increasingly been used for automatic flood extent mapping. However, the use of Convolutional Neural Networks (CNNs) for this purpose is relatively new and requires further investigations. In this study, the U-Net architecture for multi-class segmentation of flooded areas and flooded vegetation was employed by using Sentinel-1 SAR data and altitude information as input. The training data was produced by an automatic thresholding approach using OTSU method in Sardoba, Uzbekistan and Sagaing, Myanmar. The results were validated in Ordu, Turkey and in Ca River, Vietnam by visual comparison with previously produced flood maps. The results show that CNNs have great potential in classifying flooded areas and flooded vegetation even when trained in areas with different geographical setting. The F1 scores obtained in the study for flood and flooded vegetation classes were 0.91 and 0.85, respectively.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3