CLIFF CHANGE DETECTION USING SIAMESE KPCONV DEEP NETWORK ON 3D POINT CLOUDS

Author:

de Gélis I.,Bessin Z.,Letortu P.,Jaud M.,Delacourt C.,Costa S.,Maquaire O.,Davidson R.,Corpetti T.,Lefèvre S.

Abstract

Abstract. Mainly depending on their lithology, coastal cliffs are prone to changes due to erosion. This erosion could increase due to climate change leading to potential threats for coastal users, assets, or infrastructure. Thus, it is important to be able to understand and characterize cliff face changes at fine scale. Usually, monitoring is conducted thanks to distance computation and manual analysis of each cliff face over 3D point clouds to be able to study 3D dynamics of cliffs. This is time consuming and inclined to each one judgment in particular when dealing with 3D point clouds data. Indeed, 3D point clouds characteristics (sparsity, impossibility of working on a classical top view representation, volume of data, …) make their processing harder than 2D images. Last decades, an increase of performance of machine learning methods for earth observation purposes has been performed. To the best of our knowledge, deep learning has never been used for 3D change detection and categorization in coastal cliffs. Lately, Siamese KPConv brings successful results for change detection and categorization into 3D point clouds in urban area. Although the case study is different by its more random characteristics and its complex geometry, we demonstrate here that this method also allows to extract and categorize changes on coastal cliff face. Results over the study area of Petit Ailly cliffs in Varengeville-sur-Mer (France) are very promising qualitatively as well as quantitatively: erosion is retrieved with an intersection over union score of 83.86 %.

Publisher

Copernicus GmbH

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Landslide Detection in 3D Point Clouds With Deep Siamese Convolutional Network;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

2. Change Detection Needs Change Information: Improving Deep 3-D Point Cloud Change Detection;IEEE Transactions on Geoscience and Remote Sensing;2024

3. DC3DCD: Unsupervised learning for multiclass 3D point cloud change detection;ISPRS Journal of Photogrammetry and Remote Sensing;2023-12

4. Radar Translation Network Between Sunny and Rainy Domains by Combination of KP-Convolution and CycleGAN;IEEE Open Journal of Intelligent Transportation Systems;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3