FACADE RECONSTRUCTION FOR TEXTURED LOD2 CITYGML MODELS BASED ON DEEP LEARNING AND MIXED INTEGER LINEAR PROGRAMMING

Author:

Hensel S.,Goebbels S.,Kada M.

Abstract

Abstract. The paper describes a workflow for generating LoD3 CityGML models (i.e. semantic building models with structured facades) based on textured LoD2 CityGML models by adding window and door objects. For each wall texture, bounding boxes of windows and doors are detected using “Faster R-CNN”, a deep neural network. We evaluate results for textures with different resolutions on the ICG Graz50 facade dataset. In general, detected bounding boxes match very well with the rectangular shape of most wall openings. Thus, no further classification of shapes is required. Windows are typically aligned to rows and columns, and only a few different types of windows exist for each facade. However, the neural network proposes rectangles of varying sizes, which are not always aligned perfectly. Thus, we use post-processing to obtain a more realistic appearance of facades. Window and door rectangles get aligned by solving a mixed integer linear optimization problem, which automatically leads to a clustering of these openings into few different classes of window and door types. Furthermore, an a-priori knowledge about the number of clusters is not required.

Publisher

Copernicus GmbH

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. StructuredMesh: 3-D Structured Optimization of Façade Components on Photogrammetric Mesh Models Using Binary Integer Programming;IEEE Transactions on Geoscience and Remote Sensing;2024

2. Using Machine Learning to Predict Window Opening Position in a Naturally Ventilated Building;Journal of Physics: Conference Series;2023-11-01

3. Scan2LoD3: Reconstructing semantic 3D building models at LoD3 using ray casting and Bayesian networks;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW);2023-06

4. Facade Layout Completion with Long Short-Term Memory Networks;Communications in Computer and Information Science;2023

5. Developing and Calibrating a Cost-Effective Method to Determine Window-To-Wall Ratio and Air-Conditioning Status of Existing Buildings;Proceedings of the 5th International Conference on Building Energy and Environment;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3