CONFIDENCE-AWARE PEDESTRIAN TRACKING USING A STEREO CAMERA

Author:

Nguyen U.,Rottensteiner F.,Heipke C.

Abstract

Abstract. Pedestrian tracking is a significant problem in autonomous driving. The majority of studies carries out tracking in the image domain, which is not sufficient for many realistic applications like path planning, collision avoidance, and autonomous navigation. In this study, we address pedestrian tracking using stereo images and tracking-by-detection. Our framework comes in three primary phases: (1) people are detected in image space by the mask R-CNN detector and their positions in 3D-space are computed using stereo information; (2) corresponding detections are assigned to each other across consecutive frames based on visual characteristics and 3D geometry; and (3) the current positions of pedestrians are corrected using their previous states using an extended Kalman filter. We use our tracking-to-confirm-detection method, in which detections are treated differently depending on their confidence metrics. To obtain a high recall value while keeping a low number of false positives. While existing methods consider all target trajectories have equal accuracy, we estimate a confidence value for each trajectory at every epoch. Thus, depending on their confidence values, the targets can have different contributions to the whole tracking system. The performance of our approach is evaluated using the Kitti benchmark dataset. It shows promising results comparable to those of other state-of-the-art methods.

Publisher

Copernicus GmbH

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid Motion Model for Multiple Object Tracking in Mobile Devices;IEEE Internet of Things Journal;2023-03-15

2. Virtual validation of a multi-object tracker with intercamera tracking for automotive fisheye based surround view systems;2022 IEEE 14th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP);2022-06-26

3. Pedestrian Detection with Anchor-Free and FPN Enhanced Deep Learning Approach;Machine Intelligence and Data Science Applications;2022

4. Multiple-Joint Pedestrian Tracking Using Periodic Models;Sensors;2020-12-03

5. Spatio-Temporal Research Data Infrastructure in the Context of Autonomous Driving;ISPRS International Journal of Geo-Information;2020-10-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3