FLOOD MAPPING USING RANDOM FOREST AND IDENTIFYING THE ESSENTIAL CONDITIONING FACTORS; A CASE STUDY IN FREDERICTON, NEW BRUNSWICK, CANADA

Author:

Esfandiari M.,Jabari S.,McGrath H.,Coleman D.

Abstract

Abstract. Flood is one of the most damaging natural hazards in urban areas in many places around the world as well as the city of Fredericton, New Brunswick, Canada. Recently, Fredericton has been flooded in two consecutive years in 2018 and 2019. Due to the complicated behaviour of water when a river overflows its bank, estimating the flood extent is challenging. The issue gets even more challenging when several different factors are affecting the water flow, like the land texture or the surface flatness, with varying degrees of intensity. Recently, machine learning algorithms and statistical methods are being used in many research studies for generating flood susceptibility maps using topographical, hydrological, and geological conditioning factors. One of the major issues that researchers have been facing is the complexity and the number of features required to input in a machine-learning algorithm to produce acceptable results. In this research, we used Random Forest to model the 2018 flood in Fredericton and analyzed the effect of several combinations of 12 different flood conditioning factors. The factors were tested against a Sentinel-2 optical satellite image available around the flood peak day. The highest accuracy was obtained using only 5 factors namely, altitude, slope, aspect, distance from the river, and land-use/cover with 97.57% overall accuracy and 95.14% kappa coefficient.

Publisher

Copernicus GmbH

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3