TOWARDS FINE-GRAINED ROAD MAPS EXTRACTION USING SENTINEL-2 IMAGERY

Author:

Ayala C.,Aranda C.,Galar M.

Abstract

Abstract. Nowadays, it is highly important to keep road maps up-to-date since a great deal of services rely on them. However, to date, these labours have demanded a great deal of human attention due to their complexity. In the last decade, promising attempts have been carried out to fully-automatize the extraction of road networks from remote sensing imagery. Nevertheless, the vast majority of methods rely on aerial imagery (< 1 m), whose costs are not yet affordable for maintaining up-to-date maps. This work proves that it is also possible to accurately detect roads using high resolution satellite imagery (10 m). Accordingly, we have relied on Sentinel-2 imagery considering its freely availability and the higher revisit times compared to aerial imagery. It must be taken into account that the lack of spatial resolution of this sensor drastically increases the difficulty of the road detection task, since the feasibility to detect a road depends on its width, which can reach sub-pixel size in Sentinel-2 imagery. For that purpose, a new deep learning architecture which combines semantic segmentation and super-resolution techniques is proposed. As a result, fine-grained road maps at 2.5 m are generated from Sentinel-2 imagery.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3