ON THE BENEFIT OF CONCURRENT ADJUSTMENT OF ACTIVE AND PASSIVE OPTICAL SENSORS WITH GNSS & RAW INERTIAL DATA

Author:

Mouzakidou K.,Cucci D. A.,Skaloud J.

Abstract

Abstract. In airborne laser scanning a high-frequency trajectory solution is typically determined from inertial sensors and employed to directly geo-reference the acquired laser points. When low-cost MEMS inertial sensors are used, such as in lightweight unmanned aerial vehicles, non-negligible errors in the estimated trajectory project to the final point-cloud, resulting in unsatisfactory accuracy on the ground. There are different multi-sensor fusion approaches to correct the point-cloud errors caused by an imperfect trajectory determination. Mismatches between different optical observations and/or in the overlapping regions of the point-cloud can allow the correction of the final point-cloud, either directly, by means of rigid transformations, or indirectly, via improving the scanner trajectory estimation. In this work we propose to fuse lidar and cameras in a single adjustment based on dynamic networks, considering 2D tie-points from the imagery and 3D tie-points from overlapping point-cloud sections. On a challenging corridor mapping scenario, we show that considering either 2D or 3D tie-points, along with inertial and GNSS observations, results in a remarkably accurate point-cloud, even when low-cost inertial sensors are employed and in presence of challenging surface textures, such as high vegetation. Furthermore, since the distribution of the 2D and 3D tie-points is complementary, considering them together further increases the robustness of the adjustment due to higher redundancy. By employing the proposed approach within this controlled example, we were able to improve the final point-cloud accuracy by more than three times with respect to conventional geo-referencing methodology and to reduce the magnitude of the errors.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3