ICESAT-2 LASER ALTIMETRY DATA-GUIDED HIGH-ACCURACY POSITIONING OF SATELLITE STEREO IMAGES

Author:

Zou S.,Pan H.,Zou Z.,Zhang Y.,Wu S.

Abstract

Abstract. Positioning accuracy is a key indicator that restricts the accuracy of satellite image mapping. Laser altimetry acquires surface height in decimeters or higher accuracy, providing high-accuracy topographic information for satellite photogrammetry. This study proposes a four-step high-accuracy positioning method called laser altimetry data-guided stereo images positioning (LGSP): photon outlier removal, digital surface model (DSM) generation by a variant of the tube-shape semi-global matching (tSGM), fast point cloud alignment, and DSM and rational function model (RFM) refining. First, outliers of the laser altimetry data are filtered out via confidence selection and open access DSM constraints. Second, the DSM around high-accuracy photons is generated via the variant of tSGM. Third, fast point cloud alignment is performed to align the DSM with laser altimetry data. Finally, we propose a high-resolution stereo model refinement method based on alignment parameters. Experiments on two satellite stereo datasets with different loads, resolutions, and topographies show that LGSP improved the planimetry accuracy of satellite stereo images after adding laser altimetry data. What’s more, LGSP significantly improved the height accuracy of satellite images. Specifically, LGSP reduced the height errors from the original 5.99 m to 1.00 m for the Ziyuan-3 stereo dataset and from the original 20.39 m to 0.83 m for the Gaofen-7 stereo dataset, and slightly outperformed bundle adjustment in which four ground control points were deployed around the four corners of the stereo images. RFM refining based on alignment parameters has been made publicly available at https://mega.nz/file/EFQASJ6A#BKjoupHVshylQR4wCxGd9BDtg08bhy-_aY-c_rHnl-0.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3