LSTM-MLP BASED UNCERTAINTY MODELLING APPROACH FOR COMPLEX HUMAN INDOOR TRAJECTORY

Author:

Yu Y.,Shi W.,Liu Z.,Tang K.,Chen L.,Chen R.

Abstract

Abstract. Modelling the movement uncertainty of human indoor trajectory consist of an essential part in promoting the performance of smart city related applications. At this stage, the existing uncertainty modelling algorithms usually take the constant sampling error or measurement error into consideration and cannot adapt well to the changeable human motion modes and complex handheld modes of smartphones. To fill this gap, this paper applied the Long Short-Term Memory (LSTM) network for continuous prediction of uncertainty error of human indoor trajectory with complex motion modes and detected indoor landmark points. The human motion information including handheld modes, walking speed, and heading information in extracted and fused with detected landmark points for reconstruction of human indoor trajectory under large-scale areas using Gradient Descent (GD) algorithm. In addition, the hybrid LSTM and Multilayer Perceptron (MLP) network is adopted for uncertainty error prediction, by considering both sampling error and measurement error in a specific time period, and the reconstructed trajectory with human motion features are modelled as the input vector for model training with the ground-truth uncertainty error as reference. Comprehensive experiments on real-world collected dataset indicate that the proposed LSTM-assisted uncertainty modelling algorithm has robust outperformance in uncertainty error prediction and uncertainty region definition compared with traditional uncertainty modelling approaches.

Publisher

Copernicus GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3