3D MAPPING OF BENTHIC HABITAT USING XGBOOST AND STRUCTURE FROM MOTION PHOTOGRAMMETRY

Author:

Morsy S.,Yánez Suárez A. B.,Robert K.

Abstract

Abstract. Benthic habitats mapping is essential to the management and conservation of marine ecosystems. The traditional methods of mapping benthic habitats, which involve multibeam data acquisition and manually collecting and annotating imagery data, are time-consuming. However, with technological advances, using machine learning (ML) algorithms with structure-from-motion (SfM) photogrammetry has become a promising approach for mapping benthic habitats accurately and at very high resolutions. This paper explores using SfM photogrammetry and extreme gradient boosting (XGBoost) classifier for benthic habitat 3D mapping of a vertical wall at the Charlie-Gibbs Fracture Zone in the North Atlantic Ocean. The classification workflow started with extracting frames from video footage. The SfM was then applied to reconstruct the 3D point cloud of the wall. Thereafter, nine geometric features were derived from the 3D point cloud geometry. The XGBoost classifier was then used to classify the vertical wall into rock, sponges, and corals (Case 1 - three classes). In addition, we separated the sponges class into three types of sponges: Demospongiae, Hexactinellida, and other Porifera (Case 2 - five classes). Moreover, we compared the results from XGBoost with the widely used ML classifier, random forest (RF). For Case 2, XGBoost achieved an overall accuracy (OA) of 74.45%, while RF achieved 73.10%. The OA improved by about 10% from both classifiers when the three types of sponges were combined into one class (Case 1). Results showed that the presented 3D mapping of benthic habitat has the potential to provide more detailed and accurate information about marine ecosystems.

Publisher

Copernicus GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3