TOWARDS ASSESSING SANDSTONE SURFACE MOISTURE AND DEGRADATION LEVEL FROM RADIOMETRICALLY CORRECTED TLS INTENSITY DATA

Author:

Laasch H.ORCID,Medic T.ORCID,Wieser A.

Abstract

Abstract. Water is a prevalent deterioration agent for historic masonry works, especially those made of clay-bearing sandstones. To preserve cultural heritage made of sandstone, it is important to monitor, and then detect the regions with water retention or stone deterioration. To that aim, we investigate the prospects of terrestrial laser scanner (TLS) intensities for quantifying moisture in sandstone. Through a series of experiments following the drying processes of sandstone samples, we verify that TLS intensities can serve as moisture proxies for remote-sensing water retention. We identify the theoretically most suitable wavelengths, systematic effects requiring mitigation, and promising mitigation strategies. However, we also observe that the intensities are significantly affected by the type of sandstone and its level of degradation. Our results indicate that it is possible to distinguish different sandstones and levels of artificial degradation by observing and analyzing TLS-intensity time series during the drying process.

Publisher

Copernicus GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3