PERFORMANCE ASSESSMENT OF OBJECT DETECTION FROM MULTI SATELLITES AND AERIAL IMAGES

Author:

Ahmed M.,El-Sheimy N.,Leung H.,Kamel A. M.,Moussa A.

Abstract

Abstract. Object detection in remote sensing imagery plays an important role in many applications, such as tracking and change detection. With the development of deep learning algorithms and advancement in hardware systems, improved accuracies have been achieved in the detection of various objects from remote sensing images. However, object detection across heterogeneous remote sensing imagery remains an important issue, particularly for satellite and aerial imagery. The colour variation for the same ground objects, variable resolutions, different platform heights, the parallax effect, and image distortion brought on by diverse shooting angles are the biggest hurdles in satellite-aerial detection applications. The research aims to obtain successful model for detecting aircrafts from satellite and aerial images and reduce cost and the gap of revisit time between sensors. The networks were tested using aerial, GF-2, Jilin-1 (JL-1) and Pleiades satellites test sets after being trained individually using the RGB high-resolution aerial set and panchromatic low-resolution GF-2 satellite set to validate the efficiency of the trained models. Also, the aerial-trained model and GF-2 satellite-trained model as dedicated models were compared with each other, and model trained by all dataset for Object Detection in Aerial Images (DOTA). It is observed that the anchor sizes and augmentation methods can enhance the performance of detection models. k-means algorithm and data augmentation were applied to produce better anchor box selection and avoid overfitting, atmospheric conditions problems, respectively. The accuracy assessment results demonstrate that the aerial-trained model outperforms the GF-2 satellite-trained model. In addition, the results of two dedicated detection models show improved accuracy compared to the DOTA-trained model.

Publisher

Copernicus GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3