SUITABILITY ASSESSMENT OF DIFFERENT SENSORS TO DETECT HIDDEN INSTALLATIONS FOR AS-BUILT BIM

Author:

Knechtel J.,Behmann J.,Haunert J.-H.,Dehbi Y.

Abstract

Abstract. Knowledge on the utilities hidden in the wall, e.g., electric lines or water pipes, is indispensable for work safety and valuable for planning. Since most of the existing building stock originates from the pre-digital era, no models as understood for Building Information Modeling (BIM) exist. To generate these models often labor-intensive procedures are necessary; however, recent research has dealt with the efficient generation and verification of a building’s electric network. In this context, a reliable measurement method is a necessity. In this paper we test different measurement techniques, such as point-wise measurements with hand-held devices or area-based techniques utilizing thermal imaging. For this purpose, we designed and built a simulation environment that allows various parameters to be manipulated under controlled conditions. In this scenario the low-cost handheld devices show promising results, with a precision between 92% and 100% and a recall between 89% and 100%. The expensive thermal imaging camera is also able to detect electric lines and pipes if there is enough power on the line or if the temperature of the water in the pipe and the environment’s temperature are sufficiently different. Nevertheless, while point-wise measurements can directly yield results, the thermal camera requires post-processing in specific analysis software. The results reinforce the idea of using reasoning methods in both the do-it-yourself and commercial sector, to rapidly gather information about hidden installations in a building without prior technical knowledge. This paves the way for, e.g., exploring the possibilities of an implementation and presentation in augmented reality (AR).

Publisher

Copernicus GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3