COMPARISON AND EVALUATION OF MACHINE-LEARNING-BASED SPATIAL DOWNSCALING APPROACHES ON SATELLITE-DERIVED PRECIPITATION DATA

Author:

Zhu H.ORCID,Zhou Q.ORCID,Cui A.

Abstract

Abstract. Precipitation estimation with high accuracy and resolution is crucial for hydrological and meteorological applications, particularly in ungauged river basins and regions with scarce water resources. Many machine learning (ML) algorithms have been employed in the downscaling of precipitation, however, it remains unclear which algorithm can outperform others. To address this issue, this study evaluates the performance of four ML based downscaling methods to generate high-resolution precipitation estimates at an annual scale. The satellite-derived precipitation data, environmental variables, such as, latitude, longitude, normalized difference vegetation index (NDVI), digital elevation model (DEM), and land surface temperature (LST), as well as the observations from rainfall gauges were used to constructed the regression models. The performance of the four ML algorithms including the Support Vector Regression (SVR), Random Forest (RF), Spatial Random Forest (SRF), and Extreme Gradient Boosting (XGBoost) algorithms was compared with three conventional methods: Multiple Linear Regression (MLR), geographically weighted regression (GWR) and Kriging interpolation model. Results showed that ML-based method generally outperformed traditional interpolation methods in precipitation downscaling, as they had higher accuracy and were better at reproducing the spatial distribution of rainfall. Out of ML approaches, XGBoost received the best performance, followed by SRF, RF and SVR, indicating its robustness of capturing nonlinear relationships. After the XGBoost, better performance of SRF than RF and SVR was found. This might be because the SRF just introduced the spatial autocorrelation into the RF models, which illustrated the importance of capturing spatial variations in ML algorithms. These findings regarding the comparison and assessment provided a novel downscaling method for generating high-resolution precipitation data, which could benefit regional flood forecasting, drought monitoring, and irrigation planning.

Publisher

Copernicus GmbH

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3