EVALUATING THE EFFECTS OF REDUCTIONS IN LiDAR DATA ON THE VISUAL AND STATISTICAL CHARACTERISTICS OF THE CREATED DIGITAL ELEVATION MODELS

Author:

Asal F. F.

Abstract

Abstract. With continuous developments in LiDAR technologies high point cloud densities have been attainable but accompanied by challenges for processing big volumes of data. Reductions in high point cloud densities are expected to lower data acquisition and data processing costs; however this could affect the characteristics of the generated Digital Elevation Models (DEMs). This research aimed to evaluate the effects of reductions in airborne LiDAR point cloud data densities on the visual and statistical characteristics of the generated DEMs. DEMs have been created from a dataset which constitutes last returns of raw LiDAR data that was acquired at bare lands for Gilmer County, USA between March and April 2004, where qualitative and quantitative testing analyses have been performed. Visual analysis has shown that the DEM can withstand a considerable degree of quality with reduced densities down to 0.128 pts/m2 (47 % of the data remaining), however degradations in the DEM visual characteristics appeared in coarser tones and rougher textures have occurred with more reductions. Additionally, the statistical analysis has indicated that the standard deviations of the DEM elevations have decreased by only 22 % of the total decrease with data density reductions down to 0.101 pts/m2 (37 % of the data remaining) while greater rate of decreasing in the standard deviations has occurred with more reductions referring to greater rate of surface smoothing and elevation approximating. Furthermore, the accuracy analysis testing has given that the DEM accuracy has degraded by only 4.83 % of the total degradations with data density reductions down to 0.128 pts/m2, however great deteriorations in the DEM accuracy have occurred with more data reductions. Finally, it is recommended that LiDAR data can withstand point density reductions down to 0.128 pts/m2 (about 50 % of the data) without big deteriorations in the visual and statistical characteristics of the generated DEMs.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3