Quantitative Evaluation of Color Enhancement Methods for Underwater Photogrammetry in Very Shallow Water: a Case Study

Author:

Calantropio Alessio,Chiabrando FilibertoORCID,Menna FabioORCID,Nocerino EricaORCID

Abstract

Abstract. Underwater photogrammetry is often hampered by chromatic aberration, leading to degraded 2D and 3D products. This study investigates the effectiveness of various color enhancement methods in addressing these challenges.Theoretical considerations indicate that light penetration depth varies inversely with wavelength, causing underwater images to exhibit a blue or green cast with increasing depth. Color enhancement techniques can restore natural colors by compensating for this spectral attenuation. Additionally, scattering, caused by light reflected by particles in the water, can introduce haze into underwater images. Color enhancement can mitigate scatter and improve image clarity. In this contribution, to quantitatively evaluate color enhancement methods, we compare original images with images processed using gray-world assumption methods and physical methods that account for the physical properties of light underwater. Using artificial intelligence (AI) for underwater image color enhancement, a data-driven approach was also employed. These methods were applied to a case study concerning a Roman Navis Lapidaria shipwreck carrying five monumental cipollino marble columns at a depth of 4.5 meters in the Porto Cesareo Marine Protected Area (Italy). These methods were compared quantitatively and qualitatively, and the results are presented and discussed.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3