AUTOMATIC DETECTION AND CHARACTERIZATION OF GROUND OCCLUSIONS IN URBAN POINT CLOUDS FROM MOBILE LASER SCANNING DATA

Author:

Balado J.,González E.,Verbree E.,Díaz-Vilariño L.,Lorenzo H.

Abstract

Abstract. Occlusions accompany serious problems that reduce the applicability of numerous algorithms. The aim of this work is to detect and characterize urban ground gaps based on occluding object. The point clouds for input have been acquired with Mobile Laser Scanning and have been previously segmented into ground, buildings and objects, which have been classified. The method generates various raster images according to segmented point cloud elements, and detects gaps within the ground based on their connectivity and the application of the hit-or-miss transform. The method has been tested in four real case studies in the cities of Vigo and Paris, and an accuracy of 99.6% has been obtained in occlusion detection and labelling. Cars caused 80.6% of the occlusions. Each car occluded an average ground area of 11.9 m2. The proposed method facilitates knowing the percentage of occluded ground, and if this would be reduced in successive multi-temporal acquisitions based on mobility characteristics of each object class.

Publisher

Copernicus GmbH

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3