Calibration methods for laser ablation Rb–Sr geochronology: comparisons and recommendation based on NIST glass and natural reference materials

Author:

Glorie StijnORCID,Gilbert Sarah E.,Hand Martin,Lloyd Jarred C.ORCID

Abstract

Abstract. In situ rubidium–strontium (Rb–Sr) geochronology, using laser ablation–inductively coupled plasma–tandem mass spectrometry (LA-ICP-MS/MS) technology, allows rapid dating of K-rich minerals such as micas (e.g. biotite, muscovite, and phlogopite) and K-feldspar (potassium-containing feldspar). While many studies have demonstrated the ability of the method, analytical protocols vary significantly, and to date, no studies have provided an in-depth comparison and synthesis in terms of precision and accuracy. Here we compare four calibration protocols based on commonly used reference materials (RMs) for Rb–Sr dating. We demonstrate that downhole fractionation trends (DHFs) for natural biotite, K-feldspar, and phlogopite contrast with that for the commonly used Mica-Mg nano powder reference material. Consequently, Rb–Sr dates calibrated to Mica-Mg can be up to 5 % inaccurate, and the degree of inaccuracy appears to be unsystematic between analytical sessions. Calibrating to Mica-Mg also introduces excess uncertainty that can be avoided with a more consistent primary calibration material. We propose a calibration approach involving (1) NIST-610 glass as the primary reference material (PRM) for normalisation and drift correction and (2) a natural mineral with similar DHF characteristics to the analysed samples as matrix correction RM (MCRM) to correct the Rb/Sr ratio for matrix-induced offsets. In this work, MDC phlogopite (the source mineral for Mica-Mg nano powder) was used as the MCRM, consistently producing accurate Rb–Sr dates for a series of natural biotites and K-feldspars with well-characterised expected ages. Biotite from the Banalasta Adamellite, Taratap Granodiorite, and Entire Creek pegmatite are also suitable RMs for Rb/Sr ratio calibration purposes, with consistently <1.5 % fully propagated uncertainties in our methodological approach. Until calibration using isochronous natural standards as the primary RM becomes possible in data reduction software, the two-step calibration approach described here is recommended.

Funder

Australian Research Council

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3