Cosmogenic 3He chronology of postglacial lava flows at Mt Ruapehu, Aotearoa / New Zealand

Author:

Doll PedroORCID,Eaves Shaun Robert,Kennedy Ben Matthew,Blard Pierre-HenriORCID,Nichols Alexander Robert Lee,Leonard Graham Sloan,Townsend Dougal Bruce,Cole Jim William,Conway Chris Edward,Baldwin Sacha,Fénisse Gabriel,Zimmermann Laurent,Tibari Bouchaïb

Abstract

Abstract. Accurate volcanic hazard assessments rely on a detailed understanding of the timing of past eruptions. While radiometric methods like 40Ar/39Ar or K/Ar are by far the most conventional lava flow dating tools, their low resolution for young (<20 ka) deposits interferes with the development of precise chronologies of recent effusive activity on most volcanoes. Mt Ruapehu (Aotearoa / New Zealand) has produced many lava flows throughout its history, but the precise timing of many recent eruptions remains largely unknown. In this study, we use cosmogenic 3He exposure dating to provide 23 eruption ages of young lava flows at Ruapehu. We then compare our results with existing 40Ar/39Ar and paleomagnetic constraints, highlighting the value of cosmogenic nuclide exposure dating in refining recent eruptive chronologies. Of the 23 sampled flows, 16 provided robust eruption ages (5 %–20 % internal 2σ; n≥3) between ca. 20 and 8 ka, except for one lava flow that erupted at around 43 ka, and their age distribution indicates that, during the last 20 kyr, effusive activity at Ruapehu peaked at 17–12 ka and at 9–7.5 ka. Nearly identical eruption ages of lavas located in different flanks of the volcanic edifice suggest concurrent activity from multiple vents during relatively short time intervals (0–2 kyr) at around 13, 10, and 8 ka. We analysed four individual lava flows previously dated by 40Ar/39Ar, two of which yield eruption ages older than the older limit of the 2σ interval of the radiometric dates, but the good clustering of individual samples from our sites suggests that our results better represent the real eruption age of these flows. Our 3He-based chronology shows excellent agreement with paleomagnetic constraints, suggesting that production rate uncertainties are unlikely to impact the accuracy of our eruption ages. This study demonstrates how cosmogenic nuclide dating can provide greater detail on the recent effusive chronology of stratovolcanoes, helping to resolve the low resolution of and difficulty in applying radiometric dating methods to young lava flows.

Funder

Australian Institute of Nuclear Science and Engineering

University of Canterbury

Royal Society Te Apārangi

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3