Technical note: RA138 calcite U–Pb LA-ICP-MS primary reference material
-
Published:2024-08-08
Issue:3
Volume:6
Page:465-474
-
ISSN:2628-3719
-
Container-title:Geochronology
-
language:en
-
Short-container-title:Geochronology
Author:
Guillong MarcelORCID, Samankassou EliasORCID, Müller Inigo A., Szymanowski DawidORCID, Looser NathanORCID, Tavazzani LorenzoORCID, Merino-Tomé ÓscarORCID, Bahamonde Juan R., Buret Yannick, Ovtcharova MariaORCID
Abstract
Abstract. A promising primary reference material for U–Pb laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) carbonate dating is analysed and reported here. The new reference material (RM) is a botryoidal cement (C1) from sample RA138. The sample was collected in outcrop strata of mid-Carboniferous age in northern Spain near La Robla, and multiple aliquots have been meticulously prepared for distribution. RA138 is characterized by variable U/Pb ratios (from ∼ 1 to ∼ 19) and a relatively high and homogeneous U content (∼ 4 ppm). This material exhibits a low age uncertainty (0.2 %, 2 s; unanchored; ID-TIMS), allowing for the establishment of a well-defined isochron, particularly when anchored to the initial Pb ratio using LA-ICP-MS. Isotope dilution thermal ionization mass spectrometry (ID-TIMS) analyses of micro-drilled C1 cement (17 sub-samples) produce a lower-intercept age of 321.99 ± 0.65 Ma, an initial 207Pb/206Pb ratio of 0.8495 ± 0.0065, and a mean square weighted deviation (MSWD) of 5.1. The systematic uncertainty of 1.5 % observed in repeated LA-ICP-MS analyses challenges previous estimations of 2 %–2.5 % based on repeated analyses of ASH-15D and JT using WC-1 as primary reference material, underscoring the precision and reliability of RA138 for U–Pb dating applications.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung Gobierno del Principado de Asturias ETH Zürich Foundation
Publisher
Copernicus GmbH
Reference51 articles.
1. Bowring, J. F., McLean, N. M., and Bowring, S. A.: Engineering cyber infrastructure for U-Pb geochronology: Tripoli and U-Pb_Redux, Geochem. Geophy. Geosy., 12, https://doi.org/10.1029/2010gc003479, 2011. 2. Brigaud, B., Bonifacie, M., Pagel, M., Blaise, T., Calmels, D., Haurine, F., and Landrein, P.: Past hot fluid flows in limestones detected by Δ47-(U-Pb) and not recorded by other geothermometers, Geology, 48, 851–856, https://doi.org/10.1130/g47358.1, 2020. 3. Burisch, M., Gerdes, A., Walter, B. F., Neumann, U., Fettel, M., and Markl, G.: Methane and the origin of five-element veins: Mineralogy, age, fluid inclusion chemistry and ore forming processes in the Odenwald, SW Germany, Ore Geol. Rev., 81, 42–61, https://doi.org/10.1016/j.oregeorev.2016.10.033, 2017. 4. Chaldekas, O., Vaks, A., Haviv, I., Gerdes, A., and Albert, R.: U-Pb speleothem geochronology reveals a major 6 Ma uplift phase along the western margin of Dead Sea Transform, Geol. Soc. Am. Bull., 134, 1571–1584, https://doi.org/10.1130/b36051.1, 2022. 5. Chen, X., Tissot, F. L. H., Jansen, M. F., Bekker, A., Liu, C. X., Nie, N. X., Halverson, G. P., Veizer, J., and Dauphas, N.: The uranium isotopic record of shales and carbonates through geologic time, Geochim. Cosmochim. Ac., 300, 164–191, https://doi.org/10.1016/j.gca.2021.01.040, 2021.
|
|