Recent revisions of phosphate rock reserves and resources: a critique

Author:

Edixhoven J. D.,Gupta J.,Savenije H. H. G.ORCID

Abstract

Abstract. Phosphate rock (PR) is a finite mineral indispensable for fertilizer production, while P (phosphorus) is a major pollutant if applied or discharged in excess, causing widespread eutrophication (Carpenter and Bennet, 2011). High-grade PR is obtained from deposits which took millions of years to form and which are gradually being depleted. Recently, global PR reserves as reported by the US Geological Survey (USGS) have increased from 16 000 Mt PR in 2010 to 65 000 Mt PR in 2011 and further to 67 000 Mt PR in 2014. The majority of this 4-fold increase is based on a 2010 report by the International Fertilizer Development Center (IFDC), which increased Moroccan reserves from 5700 Mt PR as reported by USGS, to 51 000 Mt PR, reported as upgraded ("beneficiated") concentrate. The report also increased global resources from 163 000 Mt PR reported in the literature in 1989 to 290 000 Mt PR. IFDC used a simplified resource terminology which does not use the underlying thresholds for reserves and resources used in the USGS classification. IFDC proposed that agreement should be reached on PR resource terminology which should be as simple as possible. The report has profoundly influenced the PR scarcity debate, shifting the emphasis from resource scarcity to the pollution angle of the phosphate problem. In view of the high dependence of food production on PR and the importance of data on PR reserves and resources for scientific analysis and policy making, data on PR deposits should be transparent, comparable, reliable, and credible. We analyze (i) how IFDC's simplified terminology compares to international best practice in resource classification and whether it is likely to yield data that meet these requirements, (ii) whether the difference in volume between raw PR ore and upgraded PR concentrate is sufficiently noted in the literature, and (iii) whether the IFDC report presents an accurate picture of PR reserves and resources. We conclude that, while there is a global development toward common criteria in resource reporting, IFDC's lack of clear thresholds for reserves and resources contravenes this and that the vagueness of its definitions for reserves and resources may allow deposits to be termed reserves or resources which could not be recognized as such under leading mineral resource classifications. The difference between PR ore and PR concentrate is barely noted in the literature, causing pervasive confusion and a significant degree of error in many assessments. Finally, we find that the report most likely presents an inflated picture of global reserves, in particular those of Morocco, where the aggregate resources of three of the four Moroccan/Western Saharan major PR deposits appear to have been simply converted to "reserves". Following the release of the IFDC report, various analysts have concluded or suggested that the available PR deposits or even the currently reported resources would likely last several thousands of years at current consumption rates. However, the data on which these statements were based do not appear to warrant such a conclusion. Further research is required as to the quantity of PR deposits and their viability for future extraction, using uniform and transparent classification terminology.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference88 articles.

1. Al-Bassam, K. S.: The Akashat phosphate deposit, Iraq, in: Phosphate Deposits of the World, Vol. 2: Phosphate Rock Resources, chap. 49, edited by: Notholt, A. J. G., Sheldon, R. P., and Davidson, D. F., International Geological Correlation Programme, Project 156, Cambridge University Press, New York, USA, 1989.

2. Asfahani, J., Aissa, M., and Al-Hent, R.: Statistical factor analysis of aerial spectrometric data, Al-Awabed area, Syria: a useful guide for phosphate and uranium exploration, Appl. Radiat. Isot., 62, 649–661, 2005.

3. Bauer, C. W. and Dunning, C. P.: Uraniferous phosphate resources of the western phosphatic field, in: Uraniferous Phosphate Resources and Technology and Economics of Uranium Recovery From Phosphate Resources United States and Free World, edited by: De Voto, R. H. and Stevens, D. N., US Department of Energy, Publication GJBX-110 (79), Grand Junction, Colorado, USA, 123–249, 1979.

4. Camisani-Calzolari, F. A.: National and international codes for reporting mineral resources and reserves: their relevance, future and comparison, J. S. Afr. I. Min. Metall., 104, 297–305, 2004.

5. Carpenter, S. R. and Bennett, E. M.: Reconsideration of the planetary boundary for phosphorus, Environ. Res. Lett., 6, 014009, https://doi.org/10.1088/1748-9326/6/1/014009, 2011.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3