Carbon dioxide atmospheric vertical profiles retrieved from space observation using ACE-FTS solar occultation instrument
-
Published:2011-03-16
Issue:6
Volume:11
Page:2455-2470
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Foucher P. Y.,Chédin A.,Armante R.,Boone C.,Crevoisier C.,Bernath P.
Abstract
Abstract. Major limitations of our present knowledge of the global distribution of CO2 in the atmosphere are the uncertainty in atmospheric transport and the sparseness of in situ concentration measurements. Limb viewing spaceborne sounders such as the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) offer a vertical resolution of a few kilometres for profiles, which is much better than currently flying or planned nadir sounding instruments can achieve. After having demonstrated the feasibility of obtaining CO2 vertical profiles in the 5–25 km altitude range with an accuracy of about 2 ppm in a previous study, we present here the results of five years of ACE-FTS observations in terms of monthly mean profiles of CO2 averaged over 10° latitude bands for northern mid-latitudes. These results are compared with in-situ aircraft measurements and with simulations from two different air transport models. Key features of the measured altitude distribution of CO2 are shown to be accurately reproduced by the ACE-FTS retrievals: variation in altitude of the seasonal cycle amplitude and extrema, seasonal change of the vertical gradient, and mean growth rate. We show that small but significant differences from model simulations could result from an over estimation of the model circulation strength during the northern hemisphere spring. Coupled with column measurements from a nadir viewing instrument, it is expected that occultation measurements will bring useful constraints to the surface carbon flux determination.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference61 articles.
1. Anderson, B., Gregory, G., Collins, J. J., Sachse, G., Conway, T., and Whiting, G.: Airborne observations of spatial and temporal variability of tropospheric carbon dioxide, J. Geophys. Res., 101, 1985–1997, 1996. 2. Andrew, A. E., Boering, K. A., Daube, B. C.,Wofsy, S. C., Loewenstein, M., Jost, H., Podolske, J. R.,Webster, C. R., Herman, R. L., Scott, D. C., Flesch, G. J., Moyer, E. J., Elkins, J. W., Dutton, G. S., Hurst, D. F., Moore, F. L., Ray, E. A., Romashkin, P. A., and Strahan, S. E.: Mean ages of stratospheric air derived from in situ observations of \\CO, \\CH, and \\NX, J. Geophys. Res., 106, 32295–32314, 2001. 3. Baker, D. F., Law, R. M., Gurney, K. R., Rayner, P., Peylin, P., Denning, A. S., Bousquet, P., Bruhwiler, L., Chen, Y. H., Ciais, P., Fung, I. Y., Heimann, M., John, J., Maki, T., Maksyutov, S., Masarie, K., Prather, M., Pak, B., Taguchi, S., and Zhu, Z.: TransCom3 inversion intercomparison: Interannual variability of regional \\CO fluxes, Global Biogeochem. Cy., 1988–2003, https://doi.org/10.1029/2004GB002439, 2006. 4. Beagley, S. R., Boone, C. D., Fomichev V. I., Jin, J. J., Semeniuk, K., McConnell, J. C., Bernath, P. F.: First multi-year occultation observations of \\CO in the MLT by ACE satellite: observations and analysis using the extended CMAM, Atmos. Chem. Phys., 10, 1133–1153, 2010. 5. Bernath, P. F.: Atmospheric Chemistry Experiment (ACE): Analytical Chemistry from Orbit, Trends Anal. Chem., 25, 647–654, 2006.
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|