Evidence for heterogeneous chlorine activation in the tropical UTLS
-
Published:2011-01-12
Issue:1
Volume:11
Page:241-256
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
von Hobe M.,Grooß J.-U.,Günther G.,Konopka P.,Gensch I.,Krämer M.,Spelten N.,Afchine A.,Schiller C.,Ulanovsky A.,Sitnikov N.,Shur G.,Yushkov V.,Ravegnani F.,Cairo F.,Roiger A.,Voigt C.,Schlager H.,Weigel R.,Frey W.,Borrmann S.,Müller R.,Stroh F.
Abstract
Abstract. Airborne in-situ observations of ClO in the tropics were made during the TROCCINOX (Aracatuba, Brazil, February 2005) and SCOUT-O3 (Darwin, Australia, November/December 2005) field campaigns. While during most flights significant amounts of ClO (≈10–20 parts per trillion, ppt) were present only in aged stratospheric air, instances of enhanced ClO mixing ratios of up to 40 ppt – significantly exceeding those expected from gas phase chemistry – were observed in air masses of a more tropospheric character. Most of these observations are associated with low temperatures or with the presence of cirrus clouds (often both), suggesting that cirrus ice particles and/or liquid aerosol at low temperatures may promote significant heterogeneous chlorine activation in the tropical upper troposphere lower stratosphere (UTLS). In two case studies, particularly high levels of ClO observed were reproduced by chemistry simulations only under the assumption that significant denoxification had occurred in the observed air. However, to reproduce the ClO observations in these simulations, O3 mixing ratios higher than observed had to be assumed, and at least for one of these flights, a significant denoxification is in contrast to the observed NO levels, suggesting that the coupling of chlorine and nitrogen compounds in the tropical UTLS may not be completely understood.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference73 articles.
1. Avallone, L. M., Toohey, D. W., Brune, W. H., Salawitch, R. J., Dessler, A. E., and Anderson, J. G.: Balloon-Borne in-Situ Measurements of ClO and Ozone – Implications For Heterogeneous Chemistry and Midlatitude Ozone Loss, Geophys. Res. Lett., 20, 1795–1798, 1993. 2. Bernath, P. F., McElroy, C. T., Abrams, M. C., Boone, C. D., Butler, M., Camy-Peyret, C., Carleer, M., Clerbaux, C., Coheur, P.-F., Colin, R., DeCola, P., DeMazière, M., Drummond, J. R., Dufour, D., Evans, W. F. J., Fast, H., Fussen, D., Gilbert, K., Jennings, D. E., Llewellyn, E. J., Lowe, R. P., Mahieu, E., McConnell, J. C., McHugh, M., McLeod, S. D., Michaud, R., Midwinter, C., Nassar, R., Nichitiu, F., Nowlan, C., Rinsland, C. P., Rochon, Y. J., Rowlands, N., Semeniuk, K., Simon, P., Skelton, R., Sloan, J. J., Soucy, M.-A., Strong, K., Tremblay, P., Turnbull, D., Walker, K. A., Walkty, I., Wardle, D. A., Wehrle, V., Zander, R., and Zou, J.: Atmospheric Chemistry Experiment (ACE): Mission overview, Geophys. Res. Lett., 32, L15S01, https://doi.org/10.1029/2005GL022386, 2005. 3. Borrmann, S., Solomon, S., Dye, J. E., and Luo, B. P.: The potential of cirrus clouds for heterogeneous chlorine activation, Geophys. Res. Lett., 23, 2133–2136, 1996. 4. Borrmann, S., Solomon, S., Avallone, L., Toohey, D., and Baumgardner, D.: On the occurrence of ClO in cirrus clouds and volcanic aerosol in the tropopause region, Geophys. Res. Lett., 24, 2011–2014, 1997. 5. Bregman, B., Wang, P. H., and Lelieveld, J.: Chemical ozone loss in the tropopause region on 15 subvisible ice clouds, calculated with a chemistry-transport model, J. Geophys. Res., 107, 4032, https://doi.org/10.1029/2001JD000761, 2002.
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|