Uncertainty in aerosol–cloud radiative forcing is driven by clean conditions
-
Published:2023-04-05
Issue:7
Volume:23
Page:4115-4122
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Gryspeerdt EdwardORCID, Povey Adam C., Grainger Roy G., Hasekamp OttoORCID, Hsu N. Christina, Mulcahy Jane P.ORCID, Sayer Andrew M.ORCID, Sorooshian ArminORCID
Abstract
Abstract. Atmospheric aerosols and their impact on cloud properties remain the
largest uncertainty in the human forcing of the climate system. By
increasing the concentration of cloud droplets (Nd), aerosols
reduce droplet size and increase the reflectivity of clouds (a
negative radiative forcing). Central to this climate impact is the
susceptibility of cloud droplet number to aerosol (β), the
diversity of which explains much of the variation in the radiative
forcing from aerosol–cloud interactions (RFaci) in global climate
models. This has made measuring β a key target for developing
observational constraints of the aerosol forcing. While the aerosol burden of the clean, pre-industrial atmosphere has
been demonstrated as a key uncertainty for the aerosol forcing, here
we show that the behaviour of clouds under these clean conditions is
of equal importance for understanding the spread in radiative
forcing estimates between models and observations. This means that
the uncertainty in the aerosol impact on clouds is,
counterintuitively, driven by situations with little
aerosol. Discarding clean conditions produces a close agreement
between different model and observational estimates of the cloud
response to aerosol but does not provide a strong constraint on the
RFaci. This makes constraining aerosol behaviour in clean conditions
an important goal for future observational studies.
Funder
Royal Society National Aeronautics and Space Administration National Centre for Earth Observation
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference35 articles.
1. Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness,
Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. a 2. Andreae, M. and Rosenfeld, D.: Aerosol–cloud–precipitation interactions, Part
1. The nature and sources of cloud-active aerosols, Earth Sci. Rev., 89,
13–41, https://doi.org/10.1016/j.earscirev.2008.03.001, 2008. a 3. Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson‐Parris,
D., Boucher, O., Carslaw, K., Christensen, M., Daniau, A., Dufresne, J.,
Feingold, G., Fiedler, S., Forster, P., Gettelman, A., Haywood, J., Lohmann,
U., Malavelle, F., Mauritsen, T., McCoy, D., Myhre, G., Mülmenstädt, J.,
Neubauer, D., Possner, A., Rugenstein, M., Sato, Y., Schulz, M., Schwartz,
S., Sourdeval, O., Storelvmo, T., Toll, V., Winker, D., and Stevens, B.:
Bounding global aerosol radiative forcing of climate change, Rev. Geophys., 58, e2019RG000660,
https://doi.org/10.1029/2019RG000660, 2020. a, b, c, d 4. Bennartz, R. and Rausch, J.: Global and regional estimates of warm cloud droplet number concentration based on 13 years of AQUA-MODIS observations, Atmos. Chem. Phys., 17, 9815–9836, https://doi.org/10.5194/acp-17-9815-2017, 2017. a 5. Carslaw, K. S., Lee, L. A., Reddington, C. L., Pringle, K. J., Rap, A.,
Forster, P. M., Mann, G. W., Spracklen, D. V., Woodhouse, M. T., Regayre,
L. A., and Pierce, J. R.: Large contribution of natural aerosols to
uncertainty in indirect forcing, Nature, 503, 67–71,
https://doi.org/10.1038/nature12674, 2013. a
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|