Abstract
Abstract. A reliable method of sample introduction is presented for online gas chromatography with a special application to in situ field portable atmospheric sampling instruments. A traditional multi-port valve is replaced with a valveless sample introduction interface that offers the advantage of long-term reliability and stable sample transfer efficiency. An engineering design model is presented and tested that allows customizing this pressure-switching-based device for other applications. Flow model accuracy is within measurement accuracy (1%) when parameters are tuned for an ambient-pressure detector and 15% accurate when applied to a vacuum-based detector. Laboratory comparisons made between the two methods of sample introduction using a thermal desorption aerosol gas chromatograph (TAG) show that the new interface has approximately 3 times greater reproducibility maintained over the equivalent of a week of continuous sampling. Field performance results for two versions of the valveless interface used in the in situ instrument demonstrate typically less than 2% week−1 response trending and a zero failure rate during field deployments ranging up to 4 weeks of continuous sampling. Extension of the valveless interface to dual collection cells is presented with less than 3% cell-to-cell carryover.
Funder
U.S. Department of Energy
Reference25 articles.
1. Blumberg, L. M.: Temperature-Programmed Gas Chromatography, Wiley-VCH, Weinheim, Germany, 2010.
2. Davankov, V. A., Onuchak, L. A., Kudryashov, S. Y., and Arutyunov, Y. I.: Averaging the pressure and flow rate of the carrier gas in a gas chromatographic column, Chromatographia, 49, 449–453, 1999.
3. Deans, D. R.: Sample injection in gas chromatography, in: Patent, Google Patents, 1972.
4. Deans, D. R.: Gas flow switching method and apparatus, in: Patent, Google Patents, 1973.
5. Deans, D. R.: A new gas sampling device for gas chromatography, J. Chromatogr. A, 289, 43–51, 1984a.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献