Using historical temperature to constrain the climate sensitivity, the transient climate response, and aerosol-induced cooling

Author:

Morgenstern OlafORCID

Abstract

Abstract. The most recent generation of climate models that has informed the Sixth Assessment Report (AR6) of the Intergovernmental Panel on Climate Change (IPCC) is characterized by the presence of several models with larger equilibrium climate sensitivities (ECSs) and transient climate responses (TCRs) than exhibited by the previous generation. Partly as a result, AR6 did not use any direct quantifications of ECSs and TCRs based on the 4×CO2 and 1pctCO2 simulations and relied on other evidence when assessing the Earth's actual ECS and TCR. Here I use historical observed global-mean temperature and simulations produced under the Detection and Attribution Model Intercomparison Project to constrain the ECS, TCR, and historical aerosol-related cooling. I introduce additivity criteria that disqualify 8 of the participating 16 models from consideration in multi-model averaging calculations. Based on the remaining eight models, I obtain an average adjusted ECS of 3.5 ± 0.4 K and a TCR of 1.8 ± 0.3 K (both at 68 % confidence). Both are consistent with the AR6 estimates but with substantially reduced uncertainties. Furthermore, importantly I find that the optimal cooling due to short-lived climate forcers consistent with the observed temperature record should, on average, be about 47 % ± 39 % of what these models simulate in their aerosol-only simulations, yielding a multi-model mean, global-mean, and annual-mean cooling due to near-term climate forcers for 2000–2014, relative to 1850–1899, of 0.24 ± 0.11 K (at 68 % confidence). This is consistent with but at the lower end of the very likely uncertainty range of the IPCC's AR6. There is a correlation between the models' ECSs and their aerosol-related cooling, whereby large-ECS models tend to be associated also with strong aerosol-related cooling. The results imply that a reduction in the aerosol-related cooling, along with a more moderate adjustment of the greenhouse-gas-related warming for most models, would bring the historical global-mean temperature simulated by these models into better agreement with observations.

Publisher

Copernicus GmbH

Reference110 articles.

1. Allen, M. and Tett, S.: Checking for model consistency in optimal fingerprinting, Clim. Dynam., 15, 419–434, https://doi.org/10.1007/s003820050291, 1999. a

2. Andreae, M., Jones, C., and Cox, P.: Strong present-day aerosol cooling implies a hot future, Nature, 435, 1187–1190, https://doi.org/10.1038/nature03671, 2005. a

3. Andrews, M. B., Ridley, J. K., Wood, R. A., Andrews, T., Blockley, E. W., Booth, B., Burke, E., Dittus, A. J., Florek, P., Gray, L. J., Haddad, S., Hardiman, S. C., Hermanson, L., Hodson, D., Hogan, E., Jones, G. S., Knight, J. R., Kuhlbrodt, T., Misios, S., Mizielinski, M. S., Ringer, M. A., Robson, J., and Sutton, R. T.: Historical simulations with HadGEM3-GC3.1 for CMIP6, J. Adv. Model. Earth Sy., 12, e2019MS001995, https://doi.org/10.1029/2019MS001995, 2020. a, b

4. Arrhenius, S.: Nature's heat usage, Nord. Tidsk., 14, 121–130, 1896. a

5. Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris, D., Boucher, O., Carslaw, K. S., Christensen, M., Daniau, A.-L., Dufresne, J.-L., Feingold, G., Fiedler, S., Forster, P., Gettelman, A., Haywood, J. M., Lohmann, U., Malavelle, F., Mauritsen, T., McCoy, D. T., Myhre, G., Mülmenstädt, J., Neubauer, D., Possner, A., Rugenstein, M., Sato, Y., Schulz, M., Schwartz, S. E., Sourdeval, O., Storelvmo, T., Toll, V., Winker, D., and Stevens, B.: Bounding Global Aerosol Radiative Forcing of Climate Change, Rev. Geophys., 58, e2019RG000660, https://doi.org/10.1029/2019RG000660, 2020. a, b

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3