Concentration and source changes of nitrous acid (HONO) during the COVID-19 lockdown in Beijing

Author:

Zhang Yusheng,Zheng Feixue,Feng Zemin,Lian Chaofan,Wang WeigangORCID,Fan Xiaolong,Ma Wei,Lin Zhuohui,Li Chang,Zhang Gen,Yan ChaoORCID,Zhang Ying,Kerminen Veli-MattiORCID,Bianch FedericoORCID,Petäjä TuukkaORCID,Kangasluoma JuhaORCID,Kulmala MarkkuORCID,Liu YongchunORCID

Abstract

Abstract. Nitrous acid (HONO) is an important precursor of OH radicals which affects not only the sinks of primary air pollutants but also the formation of secondary air pollutants, but its source closure in the atmosphere is still controversial due to a lack of experiment validation. In this study, the HONO budget in Beijing has been analyzed and validated through the coronavirus disease (COVID-19) lockdown event, which resulted in a significant reduction in air pollutant emissions, providing a rare opportunity to understand the HONO budget in the atmosphere. We measured HONO and related pollutants from 1 January to 6 March 2020, which covered the Chinese New Year (CNY) and the COVID-19 lockdown. The average concentration of HONO decreased from 0.97 ± 0.74 ppb before CNY to 0.53 ± 0.44 ppb during the COVID-19 lockdown, accompanied by a sharp drop in NOx and the greatest drop in NO (around 87 %). HONO budget analysis suggests that vehicle emissions were the most important source of HONO during the nighttime (53 ± 17 %) before CNY, well supported by the decline in their contribution to HONO during the COVID-19 lockdown. We found that the heterogeneous conversion of NO2 on ground surfaces was an important nighttime source of HONO (31 ± 5 %), while that on aerosol surfaces was a minor source (2 ± 1 %). Nitrate photolysis became the most important daytime source during the COVID-19 lockdown compared with that before CNY, resulting from the combined effect of the increase in nitrate and the decrease in NO. Our results indicate that reducing vehicle emissions should be an effective measure for alleviating HONO in Beijing.

Funder

Beijing National Laboratory for Molecular Sciences

Beijing Municipal Natural Science Foundation

Publisher

Copernicus GmbH

Reference97 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3