Structural characterization and K–Ar illite dating of reactivated, complex and heterogeneous fault zones: lessons from the Zuccale Fault, Northern Apennines

Author:

Viola GiulioORCID,Musumeci Giovanni,Mazzarini Francesco,Tavazzani LorenzoORCID,Curzi Manuel,Torgersen EspenORCID,van der Lelij Roelant,Aldega Luca

Abstract

Abstract. We studied the Zuccale Fault (ZF) on Elba, part of the Northern Apennines, to unravel the complex deformation history that is responsible for the remarkable architectural complexity of the fault. The ZF is characterized by a patchwork of at least six distinct, now tightly juxtaposed brittle structural facies (BSF), i.e. volumes of deformed rock characterized by a given fault rock type, texture, colour, composition, and age of formation. ZF fault rocks vary from massive cataclasite to foliated ultracataclasite, from clay-rich gouge to highly sheared talc phyllonite. Understanding the current spatial juxtaposition of these BSFs requires tight constraints on their age of formation during the ZF lifespan to integrate current fault geometries and characteristics over the time dimension of faulting. We present new K–Ar gouge dates obtained from three samples from two different BSFs. Two top-to-the-east foliated gouge and talc phyllonite samples document faulting in the Aquitanian (ca. 22 Ma), constraining east-vergent shearing along the ZF already in the earliest Miocene. A third sample constrains later faulting along the exclusively brittle, flat-lying principal slip surface to < ca. 5 Ma. The new structural and geochronological results reveal an unexpectedly long faulting history spanning a ca. 20 Myr time interval in the framework of the evolution of the Northern Apennines. The current fault architecture is highly heterogeneous as it formed at very different times under different conditions during this prolonged history. We propose that the ZF started as an Aquitanian thrust that then became selectively reactivated by early Pliocene out-of-sequence thrusting during the progressive structuring of the Northern Apennine wedge. These results require the critical analysis of existing geodynamic models and call for alternative scenarios of continuous convergence between the late Oligocene and the early Pliocene with a major intervening phase of extension in the middle Miocene allowing for the isostatic re-equilibration of the Northern Apennine wedge. Extension started again in the Pliocene and is still active in the innermost portion of the Northern Apennines. In general terms, long-lived, mature faults can be very architecturally complex. Their unravelling, including understanding the dynamic evolution of their mechanical properties, requires a multidisciplinary approach combining detailed structural analyses with dating the deformation events recorded by the complex internal architecture, which is a phenomenal archive of faulting and faulting conditions through time and space.

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Earth-Surface Processes,Geochemistry and Petrology,Geology,Geophysics,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3