Atmospheric boundary layer height from ground-based remote sensing: a review of capabilities and limitations

Author:

Kotthaus SimoneORCID,Bravo-Aranda Juan AntonioORCID,Collaud Coen Martine,Guerrero-Rascado Juan LuisORCID,Costa Maria JoãoORCID,Cimini DomenicoORCID,O’Connor Ewan J.ORCID,Hervo MaximeORCID,Alados-Arboledas LucasORCID,Jiménez-Portaz María,Mona LuciaORCID,Ruffieux Dominique,Illingworth Anthony,Haeffelin Martial

Abstract

Abstract. The atmospheric boundary layer (ABL) height defines the volume of air within which heat, moisture and pollutants released at the Earth’s surface are rapidly diluted. Despite the importance for air quality interpretation, numerical weather prediction, greenhouse gas assessment and renewable energy applications, amongst others, quantitative knowledge on the temporal and spatial variation in ABL height is still scarce. With continuous profiling of the entire ABL vertical extent at high temporal and vertical resolution now increasingly possible due to recent advances in ground-based remote sensing measurement technology and algorithm development, there are also dense measurement networks emerging across Europe and other parts of the world. To effectively monitor the spatial and temporal evolution of the ABL continuously at continent-scale, harmonised operations and data processing are key. Autonomous ground-based remote sensing instruments, such as microwave radiometers, radar wind profilers, Doppler wind lidars or automatic lidars and ceilometers, each offer different capabilities. The overarching objective of this review is to emphasize how these instruments are best exploited with informed network design, algorithm implementation, and data interpretation. A summary of the capability and limitations of each instrument type is provided together with a review of the vast number of retrieval methods developed for ABL height detection from different atmospheric quantities (temperature, humidity, wind, turbulence, aerosol). It is outlined how the diurnal evolution of the ABL can be monitored effectively with a combination of methods, highlighting where instrument or methodological synergy promise to be particularly valuable. To demonstrate the vast potential of increased ABL monitoring efforts, long-term observational studies are reviewed summarising our current understanding of ABL height variations. The review emphasizes that harmonised data acquisition and careful data processing are key to obtaining high-quality products, which are essential to capture the spatial and temporal complexity of the lowest part of the atmosphere in which we live and breathe.

Funder

European Cooperation in Science and Technology

Agence Nationale de la Recherche

Ministerio de Economía y Competitividad

Universidad de Granada

European Commission

Fundação para a Ciência e a Tecnologia

Horizon 2020

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3