Transitions between states of magnetotail–ionosphere coupling and the role of solar wind dynamic pressure: the 25 July 2004 interplanetary CME case

Author:

Sandholt P. E.,Farrugia C. J.,Denig W. F.

Abstract

Abstract. In a case study, we investigate transitions between fundamental magnetosphere–ionosphere (M-I) coupling modes during storm-time conditions (SYM-H between −100 and −160 nT) driven by an interplanetary coronal mass ejection (ICME). We combine observations from the near tail, at geostationary altitude (GOES-10), and electrojet activities across the auroral oval at postnoon-to-dusk and midnight. After an interval of strong westward electrojet (WEJ) activity, a 3 h long state of attenuated/quenched WEJ activity was initiated by abrupt drops in the solar wind density and dynamic pressure. The attenuated substorm activity consisted of brief phases of magnetic field perturbation and electron flux decrease at GOES-10 near midnight and moderately strong conjugate events of WEJ enhancements at the southern boundary of the oval, as well as a series of very strong eastward electrojet (EEJ) events at dusk, during a phase of enhanced ring current evolution, i.e., enhanced SYM-H deflection within −120 to −150 nT. Each of these M-I coupling events was preceded by poleward boundary intensifications and auroral streamers at higher oval latitudes. We identify this mode of attenuated substorm activity as being due to a magnetotail state characterized by bursty reconnection and bursty bulk flows/dipolarization fronts (multiple current wedgelets) with associated injection dynamo in the near tail, in their braking phase. The latter process is associated with activations of the Bostrøm type II (meridional) current system. A transition to the next state of M-I coupling, when a full substorm expansion took place, was triggered by an abrupt increase of the ICME dynamic pressure from 1 to 5 nPa. The brief field deflection events at GOES-10 were then replaced by a 20 min long interval of extreme field stretching (Bz approaching 5 nT and Bx ≈ 100 nT) followed by a major dipolarization (Δ Bz ≈ 100 nT). In the ionosphere the latter stage appeared as a "full-size" stepwise poleward expansion of the WEJ. It thus appears that the ICME passage led to fundamentally different M-I coupling states corresponding to different levels of dynamic pressure (Pdyn) under otherwise very similar ICME conditions. Full WEJ activity, covering a wide latitude range across the auroral oval in the midnight sector, was attenuated by the abrupt dynamic pressure decrease and resumed after the subsequent abrupt increase.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Ionospheric Field;Geomagnetism, Aeronomy and Space Weather;2019-11-14

2. New DMSP database of precipitating auroral electrons and ions;Journal of Geophysical Research: Space Physics;2017-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3