A solar-wind-driven empirical model of Pc3 wave activity at a mid-latitude location

Author:

Lotz S.,Heilig B.ORCID,Sutcliffe P.

Abstract

Abstract. In this paper we describe the development of two empirical models of Pc3 wave activity observed at a ground station. The models are tasked to predict pulsation intensity at Tihany, Hungary, from the OMNI solar wind data set at 5 min time resolution. One model is based on artificial neural networks and the other on multiple linear regression. Input parameters to the models are iteratively selected from a larger set of candidate inputs. The optimal set of inputs are solar wind speed, interplanetary magnetic field orientation (via cone angle), proton density and solar zenith angle (representing local time). Solar wind measurements are shifted in time with respect to Pc3 data to account for the propagation time of ULF perturbations from upstream of the bow shock. Both models achieve correlation of about 70% between measured and predicted Pc3 wave intensity. The timescales at which the most important solar wind parameters influence pulsation intensity are calculated for the first time. We show that solar wind speed influences pulsation intensity at much longer timescales (about 2 days) than cone angle (about 1 h).

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3