Wetting and drying cycles, organic amendments, and gypsum play a key role in structure formation and stability of sodic Vertisols

Author:

Niaz Sara,Wehr J. Bernhard,Dalal Ram C.,Kopittke Peter M.,Menzies Neal W.

Abstract

Abstract. In the natural environment, soils undergo wetting and drying (WD) cycles due to precipitation and evapotranspiration. The WD cycles have a profound impact on soil physical, chemical, and biological properties and drive the development of structure in soils. Degraded soils are often lacking structure, and the effect of organic amendments and WD cycles on structure formation of these soils is poorly understood. The aim of this study was to evaluate the role of biotic and abiotic factors on aggregate formation and stabilization of sodic soils after the addition of gypsum and organic amendments (feedlot manure, chicken manure, lucerne pallets, and anionic poly acrylamide). Amended soils were incubated at 25 ∘C over four WD cycles, with assessment of soil microbial respiration, electrical conductivity, pH, sodium adsorption ratio (SAR), aggregate stability in water (ASWAT), aggregate size distribution, and mean weight diameter. Our results demonstrate that WD cycles can improve aggregate stability after the addition of amendments in sodic Vertisols, but this process depends on the type of organic amendment. Lucerne pellets resulted in highest soil microbial respiration, proportions of large macroaggregates (>2000 µm), and mean weight diameter. In contrast, dispersion was significantly reduced when soils were treated with chicken manure, whilst anionic polyacrylamide only had a transient effect on aggregate stability. When these organic amendments were applied together with gypsum, the stability of aggregates was further enhanced, and dispersion became negligible after the second WD cycle. The formation and stability of small macroaggregates (2000–250 µm) was less dependent on the type of organic amendments and more dependent on WD cycles as the proportion of small macroaggregates also increased in control soils after four WD cycles, highlighting the role of WD cycles as one of the key factors that improves aggregation and stability of sodic Vertisols.

Publisher

Copernicus GmbH

Subject

Soil Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3