Complexity of diatom response to Lateglacial and Holocene climate and environmental change in ancient, deep and oligotrophic Lake Ohrid (Macedonia and Albania)
-
Published:2016-03-03
Issue:4
Volume:13
Page:1351-1365
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Zhang X. S., Reed J. M., Lacey J. H.ORCID, Francke A.ORCID, Leng M. J., Levkov Z., Wagner B.
Abstract
Abstract. Lake Ohrid (Macedonia and Albania) is a rare example of a deep, ancient Mediterranean lake and is a key site for palaeoclimate research in the northeastern Mediterranean region. This study conducts the analysis of diatoms as a proxy for Lateglacial and Holocene climate and environmental change in Lake Ohrid at a higher resolution than in previous studies. While Lake Ohrid has the potential to be sensitive to water temperature change, the data demonstrate a highly complex diatom response, probably comprising a direct response to temperature-induced lake productivity in some phases and an indirect response to temperature-related lake stratification or mixing and epilimnetic nutrient availability in others. The data also demonstrate the possible influence of physical limnological (e.g. the influence of wind stress on stratification or mixing) and chemical processes (e.g. the influence of catchment dynamics on nutrient input) in mediating the complex response of diatoms. During the Lateglacial (ca. 12 300–11 800 cal yr BP), the low-diversity dominance of hypolimnetic Cyclotella fottii indicates low lake productivity, linked to low water temperature. Although the subsequent slight increase in small, epilimnetic C. minuscula during the earliest Holocene (ca. 11 800–10 600 cal yr BP) suggests climate warming and enhanced stratification, diatom concentration remains as low as during the Lateglacial, suggesting that water temperature increase was muted across this major transition. The early Holocene (ca. 10 600–8200 cal yr BP) is characterised by a sustained increase in epilimnetic taxa, with mesotrophic C. ocellata indicating high water-temperature-induced productivity between ca. 10 600–10 200 cal yr BP and between ca. 9500–8200 cal yr BP and with C. minuscula in response to low nutrient availability in the epilimnion between ca. 10 200–9500 cal yr BP. During the middle Holocene (ca. 8200–2600 cal yr BP), when sedimentological and geochemical proxies provide evidence for maximum Holocene water temperature, anomalously low C. ocellata abundance is probably a response to epilimnetic nutrient limitation, almost mimicking the Lateglacial flora apart from the occurrence of mesotrophic Stephanodiscus transylvanicus in the hypolimnion. During the late Holocene (ca. 2600 cal yr BP–present), high abundance and fluctuating composition of epilimnetic taxa are probably a response more to enhanced anthropogenic nutrient input, particularly nitrogen enrichment, than to climate. Overall, the data indicate that previous assumptions concerning the linearity of diatom response in this deep, ancient lake are invalid, and multi-proxy analysis is essential to improve understanding of palaeolimnological dynamics in future research on the long, Quaternary sequence.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference97 articles.
1. Abella, S. E. B.: The effect of the Mt. Mazama ashfall on the planktonic
diatom community of Lake Washington, Limnol. Oceanogr., 33, 1376–1385,
1988. 2. Albrecht, C. and Wilke, T.: Ancient Lake Ohrid: biodiversity and evolution,
Hydrobiologia, 615, 103–140, 2008. 3. Allen, H. L. and Ocevski, B. T.: Limnological studies in a large, deep,
oligotrophic lake (Lake Ohrid, Yugoslavia): evaluation of nutrient
availability and control of phytoplankton production through in situ
radiobioassay procedures, Arch. Hydrobiol., 77, 1–21, 1976. 4. Anderson, N. J.: Diatoms, temperature and climatic change, Eur. J. Phycol.,
35, 307–314, 2000. 5. Barker, P., Telford, R., Merdaci, O., Williamson, D., Taieb, M., Vincens,
A., and Gibert, E.: The sensitivity of a Tanzanian crater lake to
catastrophic tephra input and four millennia of climate change, Holocene,
10, 303–310, 2000.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|