Zooplankton community succession and trophic links during a mesocosm experiment in the coastal upwelling off Callao Bay (Peru)
-
Published:2023-03-09
Issue:5
Volume:20
Page:945-969
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Ayón Dejo Patricia, Pinedo Arteaga Elda Luz, Schukat Anna, Taucher Jan, Kiko RainerORCID, Hauss HelenaORCID, Dorschner Sabrina, Hagen Wilhelm, Segura-Noguera MarionaORCID, Lischka SilkeORCID
Abstract
Abstract. The Humboldt Current Upwelling System (HCS) is the most productive eastern boundary upwelling system (EBUS) in terms of fishery yield on the planet. EBUSs are considered hotspots of climate change with predicted expansion of mesopelagic oxygen minimum zones (OMZs) and related changes in the frequency and intensity of upwelling of nutrient-rich, low-oxygen deep water. To increase our mechanistic understanding of how upwelling impacts plankton communities and trophic links, we investigated mesozooplankton community succession and gut fluorescence, fatty acid and elemental compositions (C, N, O, P), and stable isotope (δ13C, δ15N) ratios of dominant mesozooplankton and microzooplankton representatives in a mesocosm setup off Callao (Peru) after simulated upwelling with OMZ water from two different locations and different N:P signatures (moderate and extreme treatments). An oxycline between 5 and 15 m with hypoxic conditions (<50 µmol L−1) below ∼10 m persisted in the mesocosms throughout the experiment. No treatment effects were determined for the measured parameters, but differences in nutrient concentrations established through OMZ water additions were only minor. Copepods and polychaete larvae dominated in terms of abundance and biomass. Development and reproduction of the dominant copepod genera Paracalanus sp., Hemicyclops sp., Acartia sp., and Oncaea sp. were hindered as evident from accumulation of adult copepodids but largely missing nauplii. Failed hatching of nauplii in the hypoxic bottom layer of the mesocosms and poor nutritional condition of copepods suggested from very low gut fluorescence and fatty acid compositions most likely explain the retarded copepod development. Correlation analysis revealed no particular trophic relations between dominant copepods and phytoplankton groups. Possibly, particulate organic matter with a relatively high C:N ratio was a major diet of copepods. C:N ratios of copepods and polychaetes ranged 4.8–5.8 and 4.2–4.3, respectively. δ15N was comparatively high (∼13 ‰–17 ‰), potentially because the injected OMZ source water was enriched in δ15N as a result of anoxic conditions. Elemental ratios of dinoflagellates deviated strongly from the Redfield ratio. We conclude that opportunistic feeding of copepods may have played an important role in the pelagic food web. Overall, projected changes in the frequency and intensity of upwelling hypoxic waters may make a huge difference for copepod reproduction and may be further enhanced by varying N:P ratios of upwelled OMZ water masses.
Funder
Deutsche Forschungsgemeinschaft Bundesministerium für Bildung und Forschung Agence Nationale de la Recherche
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference95 articles.
1. Algueró-Muñiz, M., Alvarez-Fernandez, S., Thor, P., Bach, L. T., Esposito,
M., Horn, H. G., Ecker, U., Langer, J. A. F., Taucher, J., Malzahn, A. M.,
Riebesell, U., and Boersma, M.: Ocean acidification effects on
mesozooplankton community development: Results from a long-term mesocosm
experiment, PLOS ONE, 12, 1–21, https://doi.org/10.1371/journal.pone.0175851, 2017. a 2. Argüelles, J., Lorrain, A., Cherel, Y., Graco, M., Tafur, R., Alegre, A.,
Espinoza, P., Taipe, A., Ayón, P., and Bertrand, A.: Tracking habitat
and resource use for the jumbo squid Dosidicus gigas: a stable isotope
analysis in the Northern Humboldt Current System, Mar. Biol., 159,
2105–2116, https://doi.org/10.1007/s00227-012-1998-2, 2012. a 3. Aronés, K., Grados, D., Ayón, P., and Bertrand, A.:
Spatio-temporal trends in zooplankton biomass in the northern Humboldt
current system off Peru from 1961-2012, Deep Sea Res. Pt. II, 169, 104656, https://doi.org/10.1016/j.dsr2.2019.104656,
2019. a, b, c, d 4. Aronés, K., Ayón, P., Hirche, H.-J., and Schwamborn, R.: Hydrographic
structure and zooplankton abundance and diversity off Paita, northern Peru
(1994 to 2004) – ENSO effects, trends and changes, J. Mar.
Syst., 78, 582–598, https://doi.org/10.1016/j.jmarsys.2009.01.002, 2009. a 5. Auel, H. and Verheye, H. M.: Hypoxia tolerance in the copepod Calanoides carinatus and the effect of an intermediate oxygen minimum layer on copepod
vertical distribution in the northern Benguela Current upwelling system and
the Angola-Benguela Front, J. Exp. Mar. Biol.
Ecol., 352, 234–243, https://doi.org/10.1016/j.jembe.2007.07.020, 2007. a
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|