Author:
Galsa A.,Herein M.,Lenkey L.,Farkas M. P.,Taller G.
Abstract
Abstract. Numerical modeling has been carried out in a 2-D cylindrical shell domain to quantify the evolution of a primordial dense layer around the core–mantle boundary. Effective buoyancy ratio, Beff was introduced to characterize the evolution of the two-layer thermo-chemical convection in the Earth's mantle. Beff decreases with time due to (1) warming of the compositionally dense layer, (2) cooling of the overlying mantle, (3) eroding of the dense layer through thermal convection in the overlying mantle and (4) diluting of the dense layer through inner convection. When Beff reaches the instability point, Beff = 1, effective thermo-chemical convection starts, and the mantle will be mixed (Beff = 0) over a short time period. A parabolic relationship was revealed between the initial density difference of the layers and the mixing time. Morphology of large low-shear-velocity provinces and results from seismic tomography and normal mode data suggest a value of Beff ≥ 1 for the mantle.
Funder
Hungarian Scientific Research Fund
Subject
Paleontology,Stratigraphy,Earth-Surface Processes,Geochemistry and Petrology,Geology,Geophysics,Soil Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献