A decade of methane measurements at the Boknis Eck Time Series Station in Eckernförde Bay (southwestern Baltic Sea)

Author:

Ma Xiao,Sun Mingshuang,Lennartz Sinikka T.ORCID,Bange Hermann W.ORCID

Abstract

Abstract. Coastal areas contribute significantly to the emissions of methane (CH4) from the ocean. In order to decipher its temporal variability in the whole water column, dissolved CH4 was measured on a monthly basis at the Boknis Eck Time Series Station (BE) located in Eckernförde Bay (SW Baltic Sea) from 2006 to 2017. BE has a water depth of about 28 m, and dissolved CH4 was measured at six water depths ranging from 0 to 25 m. In general, CH4 concentrations increased with depth, indicating a sedimentary release of CH4. Pronounced enhancement of the CH4 concentrations in the bottom layer (15–25 m) was found during February, May–June and October. CH4 was not correlated with Chlorophyll a or O2 over the measurement period. Unusually high CH4 concentrations (of up to 696 nM) were sporadically observed in the upper layer (0–10 m; e.g., in November 2013 and December 2014) and coincided with major Baltic inflow (MBI) events. Surface CH4 concentrations were always supersaturated throughout the monitoring period, indicating that Eckernförde Bay is an intense but highly variable source of atmospheric CH4. We did not detect significant temporal trends in CH4 concentrations or emissions, despite ongoing environmental changes such as warming and deoxygenation in Eckernförde Bay. Overall, the CH4 variability at BE is driven by a complex interplay of various biological and physical processes.

Funder

China Scholarship Council

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Reference67 articles.

1. Ahmerkamp, S., Winter, C., Janssen, F., Kuypers, M. M., and Holtappels, M.: The impact of bedform migration on benthic oxygen fluxes, J. Geophys. Res.-Biogeo, 120, 2229–2242, https://doi.org/10.1002/2015JG003106, 2015.

2. Bange, H. W. and Malien, F.: Boknis Eck Time-series Database, Kiel Datamanagement Team, available at: https://www.bokniseck.de//database-access, last access: 23 March 2020.

3. Bange, H. W., Bartell, U. H., Rapsomanikis, S., and Andreae, M. O.: Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane, Global Biogeochem. Cy., 8, 465–480, https://doi.org/10.1029/94GB02181, 1994.

4. Bange, H. W., Bergmann, K., Hansen, H. P., Kock, A., Koppe, R., Malien, F., and Ostrau, C.: Dissolved methane during hypoxic events at the Boknis Eck Time Series Station (Eckernförde Bay, SW Baltic Sea), Biogeosciences, 7, 1279–1284, https://doi.org/10.5194/bg-7-1279-2010, 2010.

5. Barnes, J., Ramesh, R., Purvaja, R., Nirmal Rajkumar, A., Senthil Kumar, B., Krithika, K., Ravichandran, K., Uher, G., and Upstill-Goddard, R.: Tidal dynamics and rainfall control N2O and CH4 emissions from a pristine mangrove creek, Geophys. Res. Lett., 33, L15405, https://doi.org/10.11029/12006GL026829, 2006.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3