Carbon dioxide and methane fluxes from different surface types in a created urban wetland

Author:

Li XuefeiORCID,Wahlroos Outi,Haapanala Sami,Pumpanen JukkaORCID,Vasander Harri,Ojala Anne,Vesala Timo,Mammarella Ivan

Abstract

Abstract. Many wetlands have been drained due to urbanization, agriculture, forestry or other purposes, which has resulted in a loss of their ecosystem services. To protect receiving waters and to achieve services such as flood control and storm water quality mitigation, new wetlands are created in urbanized areas. However, our knowledge of greenhouse gas exchange in newly created wetlands in urban areas is currently limited. In this paper we present measurements carried out at a created urban wetland in Southern Finland in the boreal climate. We conducted measurements of ecosystem CO2 flux and CH4 flux (FCH4) at the created storm water wetland Gateway in Nummela, Vihti, Southern Finland, using the eddy covariance (EC) technique. The measurements were commenced the fourth year after construction and lasted for 1 full year and two subsequent growing seasons. Besides ecosystem-scale fluxes measured by the EC tower, the diffusive CO2 and CH4 fluxes from the open-water areas (FwCO2 and FwCH4, respectively) were modelled based on measurements of CO2 and CH4 concentration in the water. Fluxes from the vegetated areas were estimated by applying a simple mixing model using the above-mentioned fluxes and the footprint-weighted fractional area. The half-hourly footprint-weighted contribution of diffusive fluxes from open water ranged from 0 % to 25.5 % in 2013. The annual net ecosystem exchange (NEE) of the studied wetland was 8.0 g C-CO2 m−2 yr−1, with the 95 % confidence interval between −18.9 and 34.9 g C-CO2 m−2 yr−1, and FCH4 was 3.9 g C-CH4 m−2 yr−1, with the 95 % confidence interval between 3.75 and 4.07 g C-CH4 m−2 yr−1. The ecosystem sequestered CO2 during summer months (June–August), while the rest of the year it was a CO2 source. CH4 displayed strong seasonal dynamics, higher in summer and lower in winter, with a sporadic emission episode in the end of May 2013. Both CH4 and CO2 fluxes, especially those obtained from vegetated areas, exhibited strong diurnal cycles during summer with synchronized peaks around noon. The annual FwCO2 was 297.5 g C-CO2 m−2 yr−1 and FwCH4 was 1.73 g C-CH4 m−2 yr−1. The peak diffusive CH4 flux was 137.6 nmol C-CH4 m−2 s−1, which was synchronized with the FCH4. Overall, during the monitored time period, the established storm water wetland had a climate-warming effect with 0.263 kg CO2-eq m−2 yr−1 of which 89 % was contributed by CH4. The radiative forcing of the open-water areas exceeded that of the vegetation areas (1.194 and 0.111 kg CO2-eq m−2 yr−1, respectively), which implies that, when considering solely the climate impact of a created wetland over a 100-year horizon, it would be more beneficial to design and establish wetlands with large patches of emergent vegetation and to limit the areas of open water to the minimum necessitated by other desired ecosystem services.

Funder

Academy of Finland

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Reference54 articles.

1. Anderson, F. E., Bergamaschi, B., Sturtevant, C., Knox, S., Hastings, L., Windham-Myers, L., Detto, M., Hestir, E. L., Drexler, J., Miller, R. L., Matthes, J. H., Verfaillie, J., Baldocchi, D., Snyder, R. L., and Fujii, R.: Variation of energy and carbon fluxes from a restored temperate freshwater wetland and implications for carbon market verification protocols, J. Geophys. Res.-Biogeo., 121, 777–795, https://doi.org/10.1002/2015jg003083, 2016.

2. Baldocchi, D., Detto, M., Sonnentag, O., Verfaillie, J., Teh, Y. A., Silver, W., and Kelly, N. M.: The challenges of measuring methane fluxes and concentrations over a peatland pasture, Agr. Forest Meteorol., 153, 177–187, https://doi.org/10.1016/j.agrformet.2011.04.013, 2012.

3. Baldocchi, D. D.: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future, Glob. Change Biol., 9, 479–492, https://doi.org/10.1046/j.1365-2486.2003.00629.x, 2003.

4. Bridgham, S. D., Cadillo-Quiroz, H., Keller, J. K., and Zhuang, Q. L.: Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales, Glob. Change Biol., 19, 1325–1346, https://doi.org/10.1111/gcb.12131, 2013.

5. Chamberlain, S. D., Anthony, T. L., Silver, W. L., Eichelmann, E., Hemes, K. S., Oikawa, P. Y., Sturtevant, C., Szutu, D. J., Verfaillie, J. G., and Baldocchi, D. D.: Soil properties and sediment accretion modulate methane fluxes from restored wetlands, Glob. Change Biol., 24, 4107–4121, https://doi.org/10.1111/gcb.14124, 2018.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3