Influence of spatial interpolation methods for climate variables on the simulation of discharge and nitrate fate with SWAT

Author:

van der Heijden S.,Haberlandt U.

Abstract

Abstract. For ecohydrological modeling climate variables are needed on subbasin basis. Since they usually originate from point measurements spatial interpolation is required during preprocessing. Different interpolation methods yield data of varying quality, which can strongly influence modeling results. Four interpolation methods to be compared were selected: nearest neighbour, inverse distance, ordinary kriging, and kriging with external drift (Goovaerts, 1997). This study presents three strategies to evaluate the influence of the interpolation method on the modeling results of discharge and nitrate load in the river in a mesoscale river catchment (~1000 km2) using the Soil and Water Assessment Tool (SWAT, Neitsch et al., 2005) model: I. Automated calibration of the model with a mixed climate data set and consecutive application of the four interpolated data sets. II. Consecutive automated calibration of the model with each of the four climate data sets. III. Random generation of 1000 model parameter sets and consecutive application of the four interpolated climate data sets on each of the 1000 realisations, evaluating the number of realisations above a certain quality criterion threshold. Results show that strategies I and II are not suitable for evaluation of the quality of the interpolated data. Strategy III however proves a significant influence of the interpolation method on nitrate modeling. A rank order from the simplest to the most sophisticated method is visible, with kriging with external drift (KED) outperforming all others. Responsible for this behaviour is the variable temperature, which benefits most from more sophisticated methods and at the same time is the main driving force for the nitrate cycle. The missing influence of the interpolation methods on discharge modeling is explained by a much higher measuring network density for precipitation than for all other climate variables.

Publisher

Copernicus GmbH

Reference23 articles.

1. Bárdossy, A. and Das, T.: Influence of rainfall observation network on model calibration and application, Hydrol. Earth Syst. Sci., 12, 77–89, https://doi.org/10.5194/hess-12-77-2008, 2008.

2. Demyanov, V., Kanevski, M., Chernov, S., Savelieva, E., and Timonin, V.: Neural network residual kriging application for climatic data, Journal of Geographic Information and Decision Analysis, 2, 215–232, 1998.

3. Deutsch, C. V. and Journel, A. G.: GSLIB: Geostatistical software library and user's guide, Oxford University Press, New York, 1992.

4. Doherty, J.: PEST Model – Independent Parameter Estimation User Manual, 5th edn., Watermark Numerical Computing, 2004.

5. Dubois, G., Malczewski, J., and Cort, M. D.: Spatial Interpolation Comparison~97, 2(1–2), 1998.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3