Landsat, MODIS, and VIIRS snow cover mapping algorithm performance as validated by airborne lidar datasets

Author:

Stillinger TimboORCID,Rittger KarlORCID,Raleigh Mark S.ORCID,Michell Alex,Davis Robert E.,Bair Edward H.ORCID

Abstract

Abstract. Snow cover mapping algorithms utilizing multispectral satellite data at various spatial resolutions are available, each treating subpixel variation differently. Past evaluations of snow mapping accuracy typically relied on satellite data collected at a higher spatial resolution than the data in question. However, these optical data cannot characterize snow cover mapping performance under forest canopies or at the meter scale. Here, we use 3 m spatial resolution snow depth maps collected on 116 d by an aerial laser scanner to validate band ratio and spectral-mixture snow cover mapping algorithms. Such a comprehensive evaluation of sub-canopy snow mapping performance has not been undertaken previously. The following standard (produced operationally by an agency) products are evaluated: NASA gap-filled Moderate Resolution Imaging Spectroradiometer (MODIS) MOD10A1F, NASA gap-filled Visible Infrared Imaging Radiometer Suite (VIIRS) VNP10A1F, and United States Geological Survey (USGS) Landsat 8 Level-3 Fractional Snow Covered Area. Two spectral-unmixing approaches are also evaluated: Snow-Covered Area and Grain Size (SCAG) and Snow Property Inversion from Remote Sensing (SPIReS), both of which are gap-filled MODIS products and are also run on Landsat 8. We assess subpixel snow mapping performance while considering the fractional snow-covered area (fSCA), canopy cover, sensor zenith angle, and other variables within six global seasonal snow classes. Metrics are calculated at the pixel and basin scales, including the root-mean-square error (RMSE), bias, and F statistic (a detection measure). The newer MOD10A1F Version 61 and VNP10A1F Version 1 product biases (− 7.1 %, −9.5 %) improve significantly when linear equations developed for older products are applied (2.8 %, −2.7 %) to convert band ratios to fSCA. The F statistics are unchanged (94.4 %, 93.1 %) and the VNP10A1F RMSE improves (18.6 % to 15.7 %), while the MOD10A1F RMSE worsens (12.7 % to 13.7 %). Consistent with previous studies, spectral-unmixing approaches (SCAG, SPIReS) show lower biases (−0.1 %, −0.1 %) and RMSE (12.1 %, 12.0 %), with higher F statistics (95.6 %, 96.1 %) relative to the band ratio approaches for MODIS. Landsat 8 products are all spectral-mixture methods with low biases (−0.4 % to 0.3 %), low RMSE (11.4 % to 15.8 %), and high F statistics (97.3 % to 99.1 %). Spectral-unmixing methods can improve snow cover mapping at the global scale.

Funder

Cold Regions Research and Engineering Laboratory

National Aeronautics and Space Administration

National Oceanic and Atmospheric Administration

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3