Community Climate Simulations to assess avoided impacts in 1.5 °C and 2 °C futures

Author:

Sanderson Benjamin M.ORCID,Xu YangyangORCID,Tebaldi ClaudiaORCID,Wehner MichaelORCID,O'Neill BrianORCID,Jahn AlexandraORCID,Pendergrass Angeline G.ORCID,Lehner FlavioORCID,Strand Warren G.,Lin Lei,Knutti RetoORCID,Lamarque Jean FrancoisORCID

Abstract

Abstract. The Paris Agreement of December 2015 stated a goal to pursue efforts to keep global temperatures below 1.5 °C above pre-industrial levels and well below 2 °C. The IPCC was charged with assessing climate impacts at these temperature levels, but fully coupled equilibrium climate simulations do not currently exist to inform such assessments. In this study, we produce a set of scenarios using a simple model designed to achieve long term 1.5 °C and 2 °C temperatures in a stable climate. These scenarios are then used to produce century scale ensemble simulations using the Community Earth System Model, providing impact-relevant long term climate data for stabilization pathways at 1.5 °C and 2 °C levels and an overshoot 1.5 °C case, which are freely available to the community. Here we describe the design of the simulations and key aspects of their impact-relevant climate response. Exceedance of historical record temperature occurs with 60 percent greater frequency in the 2 °C climate than in a 1.5 °C climate aggregated globally, and with twice the frequency in equatorial and arid regions. Extreme precipitation intensity is statistically significantly higher in a 2.0 °C climate than a 1.5 °C climate in several regions. The model exhibits large differences in the Arctic which is ice-free with a frequency of 1 in 3 years in the 2.0 °C scenario, and only 1 in 40 years in the 1.5 °C scenario.

Publisher

Copernicus GmbH

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3