Satellite observations and model simulations of tropospheric NO<sub>2</sub> columns over south-eastern Europe
-
Published:2009-08-27
Issue:16
Volume:9
Page:6119-6134
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Zyrichidou I.,Koukouli M. E.,Balis D. S.,Katragkou E.,Melas D.,Poupkou A.,Kioutsioukis I.,van der A R.,Boersma F. K.,van Roozendael M.,Richter A.
Abstract
Abstract. Satellite observations of nitrogen dioxide (NO2) tropospheric columns over south-eastern Europe are analyzed to study the characteristics of the spatial and temporal variability of pollution in the area. The interannual variability of the tropospheric NO2 columns is presented over urban, rural and industrial locations based on measurements from four satellite instruments, GOME/ERS-2, SCIAMACHY/Envisat, OMI/Aura and GOME-2/MetOp spanning a period of over twelve years. The consistency between the different datasets over the area is investigated. Two operational algorithms for the retrieval of tropospheric NO2 are considered, the one developed jointly by the Royal Netherlands Meteorological Institute and Belgian Institute for Space Astronomy and the one developed by the University of Bremen. The tropospheric NO2 columns for the area under study have been simulated for the period 1996–2001 with the Comprehensive Air Quality Model (CAMx) and are compared with GOME measurements. Over urban and industrial locations the mean tropospheric NO2 columns range between 3 and 7.0×1015 molecules/cm2, showing a seasonal variability with a peak to peak amplitude of about 6.0×1015 molecules/cm2, while the background values over rural sites are close to 1.1×1015 molecules/cm2. Differences in the overpass time and spatial resolution of the different satellites, as well as differences in the algorithms, introduce significant differences in the estimated columns however the correlation between the different estimates is higher than 0.8. It is found that the model simulations reveal similar spatial patterns as the GOME observations, a result which is consistent with both algorithms. Although the model simulations show a mean bias of −0.1×1015 molecules/cm2 under clean conditions, the modeled temporal correlation of 0.5 is poor in absence of biogenic and biomass burning emissions.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference55 articles.
1. Acarreta, J. R., De Haan, J. F., and Stammes, P.: Cloud pressure retrieval using the O2–O2 absorption band at 477 nm, J. Geophys. Res., 109, D05204, https://doi.org/10.1029/2003JD003915, 2004. 2. Bergman, J. W. and Salby, M. L.: Diurnal variations of cloud cover and their relationship to climatological conditions, J. Climate, 9, 2802–2820, 1996. 3. Blond, N., Boersma, K. F., and Eskes, H. J.: Intercomparison of SCIAMACHY nitrogen dioxide observations, in situ measurements and air quality modeling results over Western Europe, J. Geophys. Res., 112, D10311, https://doi.org/10.1029/2006JD007277, 2007. 4. Boersma, K. F., Jacob, D. J., Trainic, M., Rudich, Y., DeSmedt, I., Dirksen, R., and Eskes, H. J.: Validation of urban NO2 concentrations and their diurnal and seasonal variations observed from the SCIAMACHY and OMI sensors using in situ surface measurements in Israeli cities, Atmos. Chem. Phys., 9, 3867–3879, 2009. 5. Boersma, K. F., Jacoba, D. J., Bucselab, E. J., Perringc, A. E., Dirksend, R., van der A, R. J., Yantoscaa, R. M., Parka, R. J., Wenigb, M. O., Bertramc, T. H., and Cohenc, R. C.: Validation of OMI tropospheric NO2 observations during INTEX-B and application to constrain NOx emissions over the eastern United States and Mexico, Atmos. Environ., 42, 4480–4497, 2008a.
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|